首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 20-kDa regulatory myosin light chain (MLC), also known as MLC-2, plays an important role in the regulation of both smooth muscle and nonmuscle cell contractile activity. Phosphorylation of MLC-2 by the enzyme MLC kinase increases the actin-activated myosin ATPase activity and thereby regulates the contractile activity. We have isolated and characterized an MLC-2 cDNA corresponding to the human vascular smooth muscle MLC-2 isoform from a cDNA library derived from umbilical artery RNA. The translation of the in vitro synthesized mRNA, corresponding to the cDNA insert, in a rabbit reticulocyte lysate results in the synthesis of a 20,000-dalton protein that is immunoreactive with antibodies raised against purified chicken gizzard MLC-2. The derived amino acid sequence of the putative human smooth muscle MLC-2 shows only three amino acid differences when compared to chicken gizzard MLC-2. However, comparison with the human cardiac isoform reveals only 48% homology. Blot hybridizations and S1 nuclease analysis indicate that the human smooth muscle MLC-2 isoform is expressed restrictively in smooth muscle tissues such as colon and uterus and in some, but not all, nonmuscle cell lines. Previously reported MLC-2 cDNA from rat aortic smooth muscle cells in culture is ubiquitously expressed in all muscle and nonmuscle cells, and it was suggested that both smooth muscle and nonmuscle MLC-2 proteins are identical and are probably encoded by the same gene. In contrast, the human smooth muscle MLC-2 cDNA that we have characterized from an intact smooth muscle tissue is not expressed in skeletal and cardiac muscles and also in a number of nonmuscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
5.
A lambda gt 11 library prepared from human umbilical vein endothelial cell RNA was screened for cDNAs encoding thrombospondin. Reagents included a monospecific antibody to human thrombospondin and a mixture of four synthetic oligodeoxyribonucleotides derived from an amino acid sequence near the NH2 terminus of mature human thrombospondin. Two series of cDNA clones coding for sequences at the 5' and 3' ends of thrombospondin mRNA, respectively, were isolated. The nucleotide sequence of a 1.3-kilobase (kb) 5' clone (lambda TS-33) coded for 99 bases of 5' untranslated RNA, a signal peptide of 18 amino acids, and the first 379 amino acids of thrombospondin. Northern blot analysis with lambda TS-33 detected a single mRNA species of approximately 6.0 kb in rat aortic smooth muscle cell RNA. Thrombospondin mRNA levels increased rapidly, but transiently, in quiescent smooth muscle cells treated with platelet-derived growth factor. The kinetics of this response were very similar to those of the thrombospondin protein to this growth factor. There was significant homology in amino acid sequence between thrombospondin and a conserved region in the circumsporozoite protein of two malarial sporozoites. This region of thrombospondin may therefore represent a potential recognition site for a cell surface thrombospondin receptor.  相似文献   

6.
We have isolated cDNA clones of the mRNA for chick embryonic myosin light chain (MLC), L23, by cross-hybridization with chicken skeletal muscle MLC1 cDNA. The identification of the isolated cDNAs was carried out by in vitro translation of hybrid-selected mRNA. Sequence analysis of the cloned cDNAs revealed that the cDNA insert contained 832 nucleotides and predicted a polypeptide of 185 amino acids with a calculated molecular weight of 20,687. The deduced amino acid sequence for L23 showed high sequence similarities to those of adult alkali type MLCs from various tissues, indicating that L23 belongs to the alkali MLC group. Using the cloned cDNA as a hybridization probe, we have revealed by RNA blot analysis that the expression of L23 mRNA was regulated in temporal and tissue-specific manners. The L23 mRNA of 1.1 kilobases is transiently expressed in embryonic skeletal, cardiac, and smooth muscles of chickens. It is also found in the brain of chickens during all stages of development so far investigated. Only a single gene for L23 was detected by Southern blot of chick genomic DNA. We therefore suggest that L23 is expressed from a single gene in both embryonic muscles and brain.  相似文献   

7.
We have isolated and characterized cDNA clones from chicken cDNA libraries derived from skeletal muscle, body wall, and cultured fibroblasts. A clone isolated from a skeletal muscle cDNA library contains the complete protein-coding sequence of the 284-amino-acid skeletal muscle beta-tropomyosin together with 72 bases of 5' untranslated sequence and nearly the entire 3' untranslated region (about 660 bases), lacking only the last 4 bases and the poly(A) tail. A second clone, isolated from the fibroblast cDNA library, contains the complete protein-coding sequence of a 248-amino-acid fibroblast tropomyosin together with 77 bases of 5' untranslated sequence and 235 bases of 3' untranslated sequence through the poly(A) tract. The derived amino acid sequence from this clone exhibits only 82% homology with rat fibroblast tropomyosin 4 and 80% homology with human fibroblast tropomyosin TM30nm, indicating that this clone encodes a third 248-amino-acid tropomyosin isoform class. The protein product of this mRNA is fibroblast tropomyosin 3b, one of two low-molecular-weight isoforms expressed in chicken fibroblast cultures. Comparing the sequences of the skeletal muscle and fibroblast cDNAs with a previously characterized clone which encodes the smooth muscle alpha-tropomyosin reveals two regions of absolute homology, suggesting that these three clones were derived from the same gene by alternative RNA splicing.  相似文献   

8.
9.
The cDNA of the two isoforms of bovine cGMP-dependent protein kinase   总被引:9,自引:0,他引:9  
W Wernet  V Flockerzi  F Hofmann 《FEBS letters》1989,251(1-2):191-196
cDNAs encoding the isoform I alpha of the cGMP-dependent protein kinase were isolated from a bovine trachea smooth muscle cDNA library constructed in lambda gt10. The deduced protein sequence is identical with the protein sequence obtained by Edman degradation of the bovine lung enzyme [(1984) Biochemistry 23, 4207-4218]. Alternate cDNA clones were isolated which code for a protein slightly different within the aminoterminal part from the known amino acid sequence. These alternate cDNAs contain the sequence of a peptide identified in the isoform I beta of cGMP-dependent protein kinase. Northern blot analysis of poly(A)+ RNA from bovine trachea smooth muscle indicated the presence of two different mRNA species of about 6.2 kb.  相似文献   

10.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

11.
We have isolated and characterized two cDNA clones from whole rat stomach, pRV alpha A-19 and pRE gamma A-11, which are specific for the alpha-vascular and gamma-enteric smooth muscle isoactins, respectively. The rat gamma-enteric smooth muscle actin contains a single amino acid substitution of a proline for a glutamine at position 359 of the mature peptide when compared with the chicken gizzard gamma-actin sequence (J. Vandekerckhove and K. Weber, FEBS Lett. 102:219, 1979). Sequence comparisons of the 5' and 3' untranslated (UT) regions of the two smooth muscle actin cDNAs demonstrate that these regions contain no apparent sequence similarities. Additional comparisons of the 5' UT regions of the two smooth muscle actin cDNAs to all other known actin sequences reveal no apparent sequence similarities for the rat gamma-enteric isoactin within the 15 base pairs of sequence currently available, while the rat alpha-vascular isoactin contains two separate sequences which are similar to sequences within the 5' UT regions of the human and chicken alpha-vascular actin genes. A similar comparison of the 3' UT regions of the two smooth muscle actins demonstrates that the alpha-vascular isoactins do not contain the high degree of cross-species sequence conservation observed for the other isoactins and that the gamma-enteric isoactin contains an inverted sequence of 52 nucleotides which is similar to a sequence found within the 3' UT regions of the human, chicken, and rat beta-cytoplasmic isoactins. These observations complicate the apparent cross-species conservation of isotype specificity of these domains previously observed for the other actin isoforms. Northern blot analysis of day 15 rat embryos and newborn, day 19 postbirth, and adult rats demonstrates that the day 15 rat embryo displays low to undetectable levels of smooth muscle isoactin mRNA expression. By birth, the stomach and small intestine show dramatic increases in alpha-vascular and gamma-enteric actin expression. These initially high levels of expression decrease through day 19 to adulthood. In the adult rat, the uterus and aorta differ in their content of smooth muscle isoactin mRNA. These results demonstrate that the gamma-enteric and alpha-vascular isoactin mRNAs are coexpressed to various degrees in tissues which contain smooth muscle.  相似文献   

12.
13.
We have sequenced a cDNA, isolated from a chick embryo fibroblast lambda gt11 library, that encodes all 887 amino acids of alpha-actinin. Sequence from 10 different peptides from chick smooth muscle alpha-actinin was found to match that derived from the cDNA. The deduced protein sequence can be divided into three distinct domains: (a) the N-terminal 240 amino acid contains a highly conserved region (compared with Dictyostelium alpha-actinin) which probably represents the actin-binding domain, (b) amino acids 270-740 contain four repeats of a spectrin-like sequence, and (c) the C-terminal sequence contains two EF-hand Ca2+-binding sites. Each of these sites is defective in at least one oxygen-containing Ca2+-chelating amino acid side chain, suggesting that they are nonfunctional. Southern blots suggest that the alpha-actinin cDNA described here hybridizes to only one gene in chicken. Northern blots reveal only one size class of mRNA in fibroblasts and smooth muscle, but no hybridizing species could be detected in skeletal muscle poly(A+) RNA. The results are consistent with the view that smooth and skeletal muscle alpha-actinins are encoded by separate genes, which are considerably divergent.  相似文献   

14.
15.
The complete 897-amino-acid sequence of chicken skeletal muscle alpha-actinin and the 856-amino-acid sequence (97% of the entire sequence) of chicken fibroblast alpha-actinin have been determined by cloning and sequencing the cDNAs. Genomic Southern analysis with the cDNA sequences shows that skeletal and fibroblast alpha-actinins are encoded by separate single-copy genes. RNA blot analyzes show that the skeletal alpha-actinin gene is expressed in the pectoralis muscle and that the fibroblast gene is expressed in the gizzard smooth muscle as well as in the fibroblast. The deduced skeletal alpha-actinin molecule has a calculated Mr of 104 x 10(3), and each alpha-actinin can be divided into three domains: (1) the NH2-terminal highly conserved actin-binding domain, which shows similarity to the product of the Duchenne's muscular dystrophy locus; (2) the middle rod-shaped dimer-forming domain, which contains the spectrin-type repeat units; and (3) the COOH-terminal two EF-hand consensus regions. Comparison of the skeletal alpha-actinin sequence with the fibroblast and smooth muscle alpha-actinin sequences demonstrated that the EF-hand structure was conserved in all of these alpha-actinin sequences, despite the reported variability of the Ca2+ sensitivities of the actin-gelation by various alpha-actinin isoforms.  相似文献   

16.
Two distinct cDNA clones for nonmuscle myosin heavy chain (MHC) were isolated from a chicken fibroblast cDNA library by cross-hydridization under a moderate stringency with chicken gizzard smooth muscle MHC cDNA. These two fibroblast MHC and the gizzard MHC are each encoded in different genes in the chicken genome. Northern blot analysis showed that both of the nonmuscle MHC mRNAs were expressed not only in fibroblasts but also in a variety of tissues including brain, lung, kidney, spleen, and skeletal, cardiac and smooth muscles. However, the relative contents of the two nonmuscle MHC mRNAs varied greatly among tissues. The encoded amino acid sequences of the nonmuscle MHCs were highly similar to each other (81% identity) and to the smooth muscle MHC (81-84%), but much less similar to vertebrate skeletal muscle MHCs (38-41%) or to protista nonmuscle MHCs (35-36%). A phylogenic tree of MHC isoforms was constructed by calculating the similarity scores between these MHC sequences. An examination of the tree showed that the vertebrate sarcomeric (skeletal and cardiac) MHC isoforms are encoded in a very closely related multigene family, and that the vertebrate non-sarcomeric (smooth muscle and nonmuscle) MHC isoforms define a distinct, less conserved MHC gene family.  相似文献   

17.
We isolated and characterized a cDNA clone encoding tropomyosin isoform 2 (TM2) from a mouse fibroblast cDNA library. TM2 was found to contain 284 amino acids and was closely related to the rat smooth and skeletal muscle alpha-TMs and the human fibroblast TM3. The amino acid sequence of TM2 showed a nearly complete match with that of human fibroblast TM3 except for the region from amino acids 189 to 213, the sequence of which was identical to those of rat smooth and skeletal muscle alpha-TMs. These results suggest that TM2 is expressed from the same gene that encodes the smooth muscle alpha-TM, the skeletal muscle alpha-TM, and TM3 via an alternative RNA-splicing mechanism. Comparison of the expression of TM2 mRNA in low-metastatic Lewis lung carcinoma P29 cells and high-metastatic D6 cells revealed that it was significantly less in D6 cells than in P29 cells, supporting our previous observations (K. Takenaga, Y. Nakamura, and S. Sakiyama, Mol. Cell. Biol. 8:3934-3937, 1988) at the protein level.  相似文献   

18.
Isolation and characterization of a cDNA encoding a chick alpha-actinin   总被引:7,自引:0,他引:7  
We have isolated and sequenced a 2.1-kilobase cDNA encoding 86% of the sequence of alpha-actinin. The cDNA clone was isolated from a chick embryo fibroblast cDNA library constructed in the expression vector lambda gt11. Identification of this sequence as alpha-actinin was confirmed by immunological methods and by comparing the deduced protein sequence with the sequence of several CNBr fragments obtained from adult chicken smooth muscle (gizzard) alpha-actinin. The deduced protein sequence shows two distinct domains, one of which consists of four repeats of approximately 120 amino acids. This region corresponds to a previously identified 50-kDa tryptic peptide involved in formation of the alpha-actinin dimer. The last 19 residues of C-terminal sequence display an homology with the so-called E-F hand of Ca2+-binding proteins. Hybridization analysis reveals only one size of mRNA (approximately 3.5 kilobases) in fibroblasts, but multiple bands in genomic cDNA.  相似文献   

19.
Mouse testis contains two size classes of actin mRNAs of 2.1 and 1.5 kilobases (kb). The 2.1-kb actin mRNA codes for cytoplasmic beta- and gamma-actin and is found throughout spermatogenesis, while the 1.5-kb actin mRNA is first detected in postmeiotic cells. Here we identify the testicular postmeiotic actin encoded by the 1.5-kb mRNA as a smooth-muscle gamma-actin (SMGA) and present its cDNA sequence. The amino acid sequence deduced from the postmeiotic actin cDNA sequence was nearly identical to that of a chicken gizzard SMGA, with one amino acid replacement at amino acid 359, where glutamine was substituted for proline. The nucleotide sequence of the untranslated region of the SMGA differed substantially from those of other isotypes of mammalian actins. By using the 3' untranslated region of the testicular SMGA, a highly specific probe was obtained. The 1.5-kb mRNA was detected in RNA from mouse aorta, small intestine, and uterus, but not in RNA isolated from mouse brain, heart, and spleen. Testicular SMGA mRNA was first detected and increased substantially in amount during spermiogenesis in the germ cells, in contrast to the decrease of the cytoplasmic beta- and gamma-actin mRNAs towards the end of spermatogenesis. Testicular SMGA mRNA was present in the polysome fractions, indicating that it was translated. These studies demonstrate the existence of an SMGA in male haploid germ cells. The implications of the existence of an SMGA in male germ cells are discussed.  相似文献   

20.
The complete amino acid sequence of rabbit skeletal muscle glycogen synthase was deduced from cDNA clones with a composite length of 3317 bp. An mRNA of 3.6 kb was identified by Northern blot analysis of rabbit skeletal muscle RNA. The mRNA coded for a protein of 734 residues with a molecular weight of 83,480. The deduced NH2-terminal and COOH-terminal sequences corresponded to those reported for the purified protein, indicating the absence of any proteolytic processing. At the nucleotide level, the 5' untranslated and coding regions were 79 and 90% identical for rabbit and human muscle glycogen synthases, whereas the 3' untranslated regions were significantly less similar. The enzymes had 97% amino acid sequence identity. Interestingly, the NH2 and COOH termini of rabbit and human muscle glycogen synthase, the regions of phosphorylation, showed the greatest sequence variation (15 of 19 mismatches and two insertion/deletion events), which may indicate different evolutionary constraints in the regulatory and catalytic regions of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号