首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations have been made in the exposed region of the avian troponin C central helix, the D/E linker, which change its length and the orientation of the Ca2(+)-binding domains relative to each other. The region 87Glu-Asp-Ala-Lys-Gly-Lys-Ser-Glu-Glu-Glu97 has been altered in five deletion (d) mutants: dEDA, dKG, dKGK, dSEEE, and dKEDAKGK. The recombinant troponin Cs were expressed in Escherichia coli, purified, and assayed for function. All mutants retained basic troponin C function. They all bound Ca2+ to the low and high affinity sites, and they all were able to confer Ca2+ sensitivity on the regulated actomyosin ATPase. However, the regulatory function of all mutants except dSEEE was defective in one part of the Ca2+ switch or the other. In certain conditions dKGK and dKEDAKGK failed to inhibit fully whereas dEDA and dKG failed to activate the regulated actomyosin ATPase fully. The following general conclusions have been made. (a) The length of the D/E linker per se (assuming the linker is helical) and the orientation of the two Ca2(+)-binding domains relative to each other are not crucial for regulation. (b) The conserved charge cluster 95Glu-Glu-Glu97, in a region of troponin C known to bind to troponin I and postulated to be required for regulation, appears to be unimportant for function. (c) Deletion of 88Glu-Asp-Ala90 resulted in a troponin C that could not activate the actomyosin (or S1) ATPase over the level of actomyosin alone, thus defining a role for troponin C in this aspect of thin filament regulation. The results have been interpreted in terms of the crystallographic structure of troponin C and related to results with analogous calmodulin mutants.  相似文献   

2.
To investigate the role of the central helix of skeletal muscle troponin C (TnC), five deletion mutants (Dobrowolski, Z., Xu, G.Q., and Hitchcock-DeGregori, S.E. (1991) J. Biol. Chem. 266, 5703-5710) of chicken TnC in the D/E linker region (K87EDAKGKSEEE97), dEDA, dKG, dKGK, dSEEE, and dKED-AKGK, were assayed for their ability to regulate muscle contraction by testing their effectiveness in restoring force and Ca2+ regulation to TnC-depleted rabbit skinned skeletal muscle fibers. By comparison with rabbit skeletal TnC, wild-type TnC, and chicken TnC, all mutants except dKG equally restored force development and Ca2+ regulation to TnC-depleted skinned muscle fibers. In contrast, approximately 4 times more dKG than rabbit skeletal TnC was required to reach 50% force restoration. Also, the pCa50 for dKG activation of force was significantly decreased. Thus, most of the TnC mutants that we studied did not have significantly altered biological activity in the skinned fiber assay. However, the 2-residue deletion in the central helix (dKG) significantly affected TnC activity. This deletion would be expected to produce a 160 degree rotation in the alpha-helix versus 60 degrees for dKGK and dEDA, 40 degrees in dSEEE, and 20 degrees in dKEDAKGK. Therefore, the change in orientation of the two Ca2(+)-binding domains appears to be a major parameter affecting TnC activity. The shift in the Ca2+ dependence in force activation may result from the inability of the Ca2(+)-specific domain to properly interact with its binding site on troponin I, an interaction which is known to increase the affinity of TnC for Ca2+ (Potter, J.D., and Gergely, J. (1975) J. Biol. Chem. 250, 4628-4633). In addition, the length of the central helix of TnC, Gly92, and the negatively charged cluster, EEE, appear not to be crucial for TnC activity.  相似文献   

3.
Ueki S  Nakamura M  Komori T  Arata T 《Biochemistry》2005,44(1):411-416
Calcium-induced structural transition in the amino-terminal domain of troponin C (TnC) triggers skeletal and cardiac muscle contraction. The salient feature of this structural transition is the movement of the B and C helices, which is termed the "opening" of the N-domain. This movement exposes a hydrophobic region, allowing interaction with the regulatory domain of troponin I (TnI) as can be seen in the crystal structure of the troponin ternary complex [Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y. (2003) Nature 424, 35-41]. In contrast to skeletal TnC, Ca(2+)-binding site I (an EF-hand motif that consists of an A helix-loop-B helix motif) is inactive in cardiac TnC. The question arising from comparisons with skeletal TnC is how both helices move according to Ca(2+) binding or interact with TnI in cardiac TnC. In this study, we examined the Ca(2+)-induced movement of the B and C helices relative to the D helix in a cardiac TnC monomer state and TnC-TnI binary complex by means of site-directed spin labeling electron paramagnetic resonance (EPR). Doubly spin-labeled TnC mutants were prepared, and the spin-spin distances were estimated by analyzing dipolar interactions with the Fourier deconvolution method. An interspin distance of 18.4 A was estimated for mutants spin labeled at G42C on the B helix and C84 on the D helix in a Mg(2+)-saturated monomer state. The interspin distance between Q58C on the C helix and C84 on the D helix was estimated to be 18.3 A under the same conditions. Distance changes were observed by the addition of Ca(2+) ions and the formation of a complex with TnI. Our data indicated that the C helix moved away from the D helix in a distinct Ca(2+)-dependent manner, while the B helix did not. A movement of the B helix by interaction with TnI was observed. Both Ca(2+) and TnI were also shown to be essential for the full opening of the N-domain in cardiac TnC.  相似文献   

4.
Finley NL  Howarth JW  Rosevear PR 《Biochemistry》2004,43(36):11371-11379
Cardiac troponin C (cTnC) is the Ca(2+)-binding component of the troponin complex and, as such, is the Ca(2+)-dependent switch in muscle contraction. This protein consists of two globular lobes, each containing a pair of EF-hand metal-binding sites, connected by a linker. In the N lobe, Ca(2+)-binding site I is inactive and Ca(2+)-binding site II is primarily responsible for initiation of muscle contraction. The C lobe contains Ca(2+)/Mg(2+)-binding sites III and IV, which bind Mg(2+) with lower affinity and play a structural as well as a secondary role in modulating the Ca(2+) signal. To understand the structural consequences of Ca(2+)/Mg(2+) exchange in the C lobe, we have determined the NMR solution structure of the Mg(2+)-loaded C lobe, cTnC(81-161), in a complex with the N domain of cardiac troponin I, cTnI(33-80), and compared it with a refined Ca(2+)-loaded structure. The overall tertiary structure of the Mg(2+)-loaded C lobe is very similar to that of the refined Ca(2+)-loaded structure as evidenced by the root-mean-square deviation of 0.94 A for all backbone atoms. While metal-dependent conformational changes are minimal, substitution of Mg(2+) for Ca(2+) is characterized by condensation of the C-terminal portion of the metal-binding loops with monodentate Mg(2+) ligation by the conserved Glu at position 12 and partial closure of the cTnI hydrophobic binding cleft around site IV. Thus, conformational plasticity in the Ca(2+)/Mg(2+)-dependent binding loops may represent a mechanism to modulate C-lobe cTnC interactions with the N domain of cTnI.  相似文献   

5.
Kim J  Ghosh S  Nunziato DA  Pitt GS 《Neuron》2004,41(5):745-754
Ca(2+)-dependent inactivation (CDI) of L-type voltage-gated Ca(2+) channels limits Ca(2+) entry into neurons, thereby regulating numerous cellular events. Here we present the isolation and purification of the Ca(2+)-sensor complex, consisting of calmodulin (CaM) and part of the channel's pore-forming alpha(1C) subunit, and demonstrate the Ca(2+)-dependent conformational shift that underlies inactivation. Dominant-negative CaM mutants that prevent CDI block the sensor's Ca(2+)-dependent conformational change. We show how Ile1654 in the CaM binding IQ motif of alpha(1C) forms the link between the Ca(2+) sensor and the downstream inactivation machinery, using the alpha(1C) EF hand motif as a signal transducer to activate the putative pore-occluder, the alpha(1C) I-II intracellular linker.  相似文献   

6.
Previously, we utilized (15)N transverse relaxation rates to demonstrate significant mobility in the linker region and conformational exchange in the regulatory domain of Ca(2+)-saturated cardiac troponin C bound to the isolated N-domain of cardiac troponin I (Gaponenko, V., Abusamhadneh, E., Abbott, M. B., Finley, N., Gasmi-Seabrook, G., Solaro, R.J., Rance, M., and Rosevear, P.R. (1999) J. Biol. Chem. 274, 16681-16684). Here we show a large decrease in cardiac troponin C linker flexibility, corresponding to residues 85-93, when bound to intact cardiac troponin I. The addition of 2 m urea to the intact cardiac troponin I-troponin C complex significantly increased linker flexibility. Conformational changes in the regulatory domain of cardiac troponin C were monitored in complexes with troponin I-(1-211), troponin I-(33-211), troponin I-(1-80) and bisphosphorylated troponin I-(1-80). The cardiac specific N terminus, residues 1-32, and the C-domain, residues 81-211, of troponin I are both capable of inducing conformational changes in the troponin C regulatory domain. Phosphorylation of the cardiac specific N terminus reversed its effects on the regulatory domain. These studies provide the first evidence that the cardiac specific N terminus can modulate the function of troponin C by altering the conformational equilibrium of the regulatory domain.  相似文献   

7.
Proton magnetic resonance spectroscopy has been used to study the cation (Mg2+, Ca2+)-dependent conformational states of the C-terminal domain of rabbit skeletal troponin C under a variety of solution conditions. Nuclear Overhauser data and paramagnetic probe observations provide definition of the configuration of this region of troponin C. Comparative study of homologous proteins identify common features of the tertiary structure relevant to the cation binding reaction. Complex formation with troponin I and the drug trifluoperazine is observed to adjust the solution conformation of the C-terminal domain of troponin C. The interactive conformational response to cation coordination and the binding of the drug and troponin I are discussed.  相似文献   

8.
Protein kinase C phosphorylation of cardiac troponin, the Ca(2+)-sensing switch in muscle contraction, is capable of modulating the response of cardiac muscle to a Ca(2+) ion concentration. The N-domain of cardiac troponin I contains two protein kinase C phosphorylation sites. Although the physiological consequences of phosphorylation at Ser(43)/Ser(45) are known, the molecular mechanisms responsible for these functional changes have yet to be established. In this work, NMR was used to identify conformational and dynamic changes in cardiac troponin C upon binding a phosphomimetic troponin I, having Ser(43)/Ser(45) mutated to Asp. Chemical shift perturbation mapping indicated that residues in helix G were most affected. Smaller chemical shift changes were observed in residues located in the Ca(2+)/Mg(2+)-binding loops. Amide hydrogen/deuterium exchange rates in the C-lobe of troponin C were compared in complexes containing either the wild-type or phosphomimetic N-domain of troponin I. In the presence of a phosphomimetic domain, exchange rates in helix G increased, whereas a decrease in exchange rates for residues mapping to Ca(2+)/Mg(2+)-binding loops III and IV was observed. Increased exchange rates are consistent with destabilization of the Thr(129)-Asp(132) helix capping box previously characterized in helix G. The perturbation of helix G and metal binding loops III and IV suggests that phosphorylation alters metal ion affinity and inter-subunit interactions. Our studies support a novel mechanism for protein kinase C signal transduction, emphasizing the importance of C-lobe Ca(2+)/Mg(2+)-dependent troponin interactions.  相似文献   

9.
Kobayashi T  Zhao X  Wade R  Collins JH 《Biochemistry》1999,38(17):5386-5391
We have mutated eight conserved, charged amino acid residues in the N-terminal, regulatory domain of troponin C (TnC) so we could investigate their role in troponin-linked Ca2+ regulation of muscle contraction. These residues surround a hydrophobic pocket in the N-terminal domain of TnC which, when Ca2+ binds to regulatory sites in this domain, is exposed and interacts with the inhibitory region of troponin I (TnI). We constructed three double mutants (E53A/E54A, E60A/E61A, and E85A/D86A) and two single mutants (R44A and R81A) of rabbit fast skeletal muscle troponin C (TnC) in which the charged residues were replaced with neutral alanines. All five of these mutants retained TnC's ability to bind TnI in a Ca2+-dependent manner, to neutralize TnI's inhibition of actomyosin S1 ATPase activity, and to form a ternary complex with TnI and troponin T (TnT). Ternary complexes formed with TnC(R44A) or TnC(R81A) regulated actomyosin S1 ATPase activity normally, with TnI-based inhibition in the absence of Ca2+ and TnT-based activation in the presence of Ca2+. TnC(E53A/E54A) and TnC(E85A/D86A) interacted weakly with TnT, as judged by native gel electrophoresis. Ternary complexes formed with these mutants inhibited actomyosin S1 ATPase activity in both the presence and absence of Ca2+, and did not undergo Ca2+-dependent structural changes in TnI which can be detected by limited chymotryptic digestion. TnC(E60A/E61A) interacted normally with TnT. Its ternary complex showed Ca2+-dependent structural changes in TnI, inhibited actomyosin S1 ATPase in the absence of Ca2+, but did not activate ATPase in the presence of Ca2+. This is the first demonstration that selective mutation of TnC can abolish the activating effect of troponin while its inhibitory function is retained. Our results suggest the existence of an elaborate network of protein-protein interactions formed by TnI, TnT, and the N-terminal domain of TnC, all of which are important in the Ca2+-dependent regulation of muscle contraction.  相似文献   

10.
Ca2+ regulation of vertebrate striated muscle contraction is initiated by conformational changes in the N-terminal, regulatory domain of the Ca2+-binding protein troponin C (TnC), altering the interaction of TnC with the other subunits of troponin complex, TnI and TnT. We have investigated the role of acidic amino acid residues in the N-terminal, regulatory domain of TnC in binding to the inhibitory region (residues 96-116) of TnI. We constructed three double mutants of TnC (E53A/E54A, E60A/E61A and E85A/D86A), in which pairs of acidic amino acid residues were replaced by neutral alanines, and measured their affinities for synthetic inhibitory peptides. These peptides had the same amino acid sequence as TnI segments 95-116, 95-119 or 95-124, except that the natural Phe-100 of TnI was replaced by a tryptophan residue. Significant Ca2+-dependent increases in the affinities of the two longer peptides, but not the shortest one, to TnC could be detected by changes in Trp fluorescence. In the presence of Ca2+, all the mutant TnCs showed about the same affinity as wild-type TnC for the inhibitory peptides. In the presence of Mg2+ and EGTA, the N-terminal, regulatory Ca2+-binding sites of TnC are unoccupied. Under these conditions, the affinity of TnC(E85A/D86A) for inhibitory peptides was about half that of wild-type TnC, while the other two mutants had about the same affinity. These results imply a Ca2+-dependent change in the interaction of TnC Glu-85 and/or Asp-86 with residues (117-124) on the C-terminal side of the inhibitory region of TnI. Since Glu-85 and/or Asp-86 of TnC have also been demonstrated to be involved in Ca2+-dependent regulation through interaction with TnT, this region of TnC must be critical for troponin function.  相似文献   

11.
Huang H  Cafiso DS 《Biochemistry》2008,47(47):12380-12388
Synaptotagmin 1 (syt1) is an integral membrane protein localized on the synaptic vesicle that acts as the Ca(2+) sensor for neuronal exocytosis. Synaptotagmin 1 contains two C2 domains, C2A and C2B, which bind Ca(2+) ions, membranes, and SNAREs. Here, site-directed spin labeling (SDSL) was used to determine the position and dynamics of the region that links the two C2 domains in a water soluble construct encompassing the two C2 domains (syt1C2AB). An analysis of the EPR line shapes from this region indicates that the linker is flexible and unstructured when syt1 is in solution or bound to lipid bilayers. The nanosecond dynamics of the linker does not change, in the presence or absence of Ca(2+), suggesting that there is no Ca(2+)-dependent intramolecular association between the two domains. When syt1C2AB is membrane-bound, the position of the linker relative to the membrane interface was determined by measuring parameters for the collision of the spin-labeled syt1C2AB mutants with both soluble and membrane-bound Ni(II) chelates. These data indicate that the linker does not penetrate the membrane surface but lies approximately 7-10 A from the bilayer surface. In addition, the linker remains flexible when syt1C2AB binds to the SNARE complex, indicating that direct interactions between this linker and the SNAREs do not mediate association. These data suggest that the two C2 domains of syt1 interact independently on the membrane interface, or when bound to SNAREs.  相似文献   

12.
Fourier transform infrared (FTIR) spectroscopy has been used to examine the conformationally sensitive amide I' bands of calmodulin and troponin C. These are observed to undergo a sequence of spectroscopic changes which reflect conformational rearrangements that take place when Ca2+ is bound. Calmodulin and troponin C show similar though not identical changes on Ca2+ binding, and the effect of Mg2+ on troponin C is quite different from that of Ca2+. Both proteins show absorption maxima in the amide I' region at 1644 cm-1 which is significantly lower in frequency than has been generally observed for proteins that contain a high percentage of alpha-helix. It is proposed that an unusually high proportion of the helices in the structures of these proteins are distorted from the normal alpha-helical configuration such that the carbonyl stretching frequencies are lowered. It is further proposed that the shift to lower frequency is due to backbone carbonyl groups in the distorted helices that form strong hydrogen bonds with solvent molecules. A decrease in intensity at 1654 cm-1, the normal frequency assignment for alpha-helical structure, is observed as Ca2+ binds to calmodulin and troponin C. This suggests that Ca2+ binding results in a net decrease in "normal" alpha-helix conformation. There is a corresponding increase in intensity of the band at 1644 cm-1, possibly due to an increase in distorted helix content, allowing for a net increase in helix consistent with circular dichroism estimates of the Ca2+-dependent changes in helix content in calmodulin.  相似文献   

13.
The interaction sites of rabbit skeletal troponin I (TnI) with troponin C (TnC), troponin T (TnT), tropomyosin (Tm) and actin were mapped systematically using nine single cysteine residue TnI mutants with mutation sites at positions 6, 48, 64, 89, 104, 121, 133, 155 or 179 (TnI6, TnI48 etc.). Each mutant was labeled with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (BP-Mal), and incorporated into the TnI.TnC binary complex, the TnI.TnC.TnT ternary troponin (Tn) complex, and the Tn.Tm.F-actin synthetic thin filament. Photocrosslinking reactions carried out in the presence and absence of Ca(2+) yielded the following results: (1) BP-TnI6 photocrosslinked primarily to TnC with a small degree of Ca(2+)-dependence in all the complex forms. (2) BP-TnI48, TnI64 and TnI89 photocrosslinked to TnT with no Ca(2+)-dependence. Photocrosslinking to TnC was reduced in the ternary versus the binary complex. BP-TnI89 also photocrosslinked to actin with higher yields in the absence of Ca(2+) than in its presence. (3) BP-TnI104 and TnI133 photocrosslinked to actin with much higher yields in the absence than in the presence of Ca(2+). (4) BP-TnI121 photocrosslinked to TnC with a small degree of Ca(2+)-dependence, and did not photocrosslink to actin. (5) BP-TnI155 and TnI179 photocrosslinked to TnC, TnT and actin, but all with low yields. All the labeled mutants photocrosslinked to TnC with varying degrees of Ca(2+)-dependence, and none to Tm. These results, along with those published allowed us to construct a structural and functional model of TnI in the Tn complex: in the presence of Ca(2+), residues 1-33 of TnI interact with the C-terminal domain hydrophobic cleft of TnC, approximately 48-89 with TnT, approximately 90-113 with TnC's central helix, approximately 114-125 with TnC's N-terminal domain hydrophobic cleft, and approximately 130-150 with TnC's A-helix. In the absence of Ca(2+), residues approximately 114-125 move out of TnC's N-terminal domain hydrophobic cleft and trigger the movements of residues approximately 89-113 and approximately 130-150 away from TnC and towards actin.  相似文献   

14.
The interaction between troponin I and troponin C plays a critical role in the regulation of muscle contraction. In this study the interaction between troponin C (TnC) and the N-terminal region of TnI was investigated by the synthesis of three TnI peptides (residues 1-40/Rp, 10-40, and 20-40). The regulatory peptide (Rp) on binding to TnC prevents the ability of TnC to release the inhibition of the acto-S1-tropomyosin ATPase activity caused by TnI or the TnI inhibitory peptide (Ip), residues 104-115. A stable complex between TnC and Rp in the presence of Ca2+ was demonstrated by polyacrylamide gel electrophoresis in the presence of 6 M urea. Rp was able to displace TnI from a preformed TnI.TnC complex. In the absence of Ca2+, Rp was unable to maintain a complex with TnC in benign conditions of polyacrylamide gel electrophoresis which demonstrates the Ca(2+)-dependent nature of this interaction. Size-exclusion chromatography demonstrated that the TnC.Rp complex consisted of a 1:1 complex. The results of these studies have shown that the N-terminal region of TnI (1-40) plays a critical role in modulating the Ca(2+)-sensitive release of TnI inhibition by TnC.  相似文献   

15.
It was found, using circular dichroism spectroscopy, that CaM, in the presence of Ca2+, decreases the alpha-helix content of (Ca2(+)-Mg2+)ATPase of porcine erythrocytes from 66% to 55%. In the absence of Ca2+ the enzyme showed 46% of alpha-helix. Moreover, quenching of the ATPase intrinsic fluorescence by acrylamide indicated that, depending on the enzyme conformational status, the accessibility of its tryptophan residues is influenced by direct interaction with CaM at micromolar Ca2+ concentration. This was also confirmed by the observation that fluorescence energy transfer occurred from tryptophan residues of (Ca2(+)-Mg2+)ATPase to dansylated CaM. The presented results may indicate that binding of CaM gives rise to a novel conformational state of the enzyme, distinct from E1 and E2 forms of the Ca2+ pump.  相似文献   

16.
Jaren OR  Kranz JK  Sorensen BR  Wand AJ  Shea MA 《Biochemistry》2002,41(48):14158-14166
Calmodulin (CaM) is an intracellular calcium-binding protein essential for many pathways in eukaryotic signal transduction. Although a structure of Ca(2+)-saturated Paramecium CaM at 1.0 A resolution (1EXR.pdb) provides the highest level of detail about side-chain orientations in CaM, information about an end state alone cannot explain driving forces for the transitions that occur during Ca(2+)-induced conformational switching and why the two domains of CaM are saturated sequentially rather than simultaneously. Recent studies focus attention on the contributions of interdomain linker residues. Electron paramagnetic resonance showed that Ca(2+)-induced structural stabilization of residues 76-81 modulates domain coupling [Qin and Squier (2001) Biophys. J. 81, 2908-2918]. Studies of N-domain fragments of Paramecium CaM showed that residues 76-80 increased thermostability of the N-domain but lowered the Ca(2+) affinity of sites I and II [Sorensen et al. (2002) Biochemistry 41, 15-20]. To probe domain coupling during Ca(2+) binding, we have used (1)H-(15)N HSQC NMR to monitor more than 40 residues in Paramecium CaM. The titrations demonstrated that residues Glu78 to Glu84 (in the linker and cap of helix E) underwent sequential phases of conformational change. Initially, they changed in volume (slow exchange) as sites III and IV titrated, and subsequently, they changed in frequency (fast exchange) as sites I and II titrated. These studies provide evidence for Ca(2+)-dependent communication between the domains, demonstrating that spatially distant residues respond to Ca(2+) binding at sites I and II in the N-domain of CaM.  相似文献   

17.
Li MX  Hoffman RM  Sykes BD 《Biochemistry》2006,45(32):9833-9840
W7 is a well-known calmodulin (CaM) antagonist and has been implicated as an inhibitor of the troponin C-mediated Ca(2+) activation of cardiac muscle contraction. In this study, we use NMR spectroscopy to study binding of W7 to cardiac troponin C (cTnC) free or in complex with cardiac troponin I (cTnI) peptides. Titration of cTnC.3Ca(2+) with W7 shows that residues throughout the sequence, including the N- and C-domains of cTnC and the central linker, are affected. Analysis of the binding stoichiometry and the trajectories of chemical shift changes indicate that W7 binding occurs at multiple sites. To address the issue of whether multiple-site binding is relevant within the troponin complex, W7 is titrated to a cTnC-cTnI complex (cTnC.3Ca(2+).cTnI(34)(-)(71).cTnI(128)(-)(163)). In the presence of the N-terminal (residues approximately 34-71), inhibitory (residues approximately 128-147), and switch (residues approximately 147-163) regions of cTnI, W7 induces chemical shift changes only in the N-domain and not in the C-domain or the central linker of cTnC. The results indicate that in the presence of cTnI, W7 no longer binds to multiple sites of cTnC but instead binds specifically to the N-domain, and the binding (K(D) = 0.5 +/- 0.1 mM) can occur together with the switch region of cTnI. Hence, W7 may play a role in directly modulating the Ca(2+) sensitivity of the regulatory domain of cTnC and the interaction of the switch region of cTnI and cTnC.  相似文献   

18.
Ward DG  Brewer SM  Cornes MP  Trayer IP 《Biochemistry》2003,42(34):10324-10332
Phosphorylation of the unique N-terminal extension of cardiac troponin I (TnI) by PKA modulates Ca(2+) release from the troponin complex. The mechanism by which phosphorylation affects Ca(2+) binding, however, remains unresolved. To investigate this question, we have studied the interaction of a fragment of TnI consisting of residues 1-64 (I1-64) with troponin C (TnC) by isothermal titration microcalorimetry and cross-linking. I1-64 binds extremely tightly to the C-terminal domain of TnC and weakly to the N-terminal domain. Binding to the N-domain is weakened further by phosphorylation. Using the heterobifunctional cross-linker benzophenone-4-maleimide and four separate cysteine mutants of I1-64 (S5C, E10C, I18C, R26C), we have probed the protein-protein interactions of the N-terminal extension. All four I1-64 mutants cross-link to the N-terminal domain of TnC. The cross-linking is enhanced by Ca(2+) and reduced by phosphorylation. By introducing the same monocysteine mutations into full-length TnI, we were able to probe the environment of the N-terminal extension in intact troponin. We find that the full length of the extension lies in close proximity to both TnC and troponin T (TnT). Ca(2+) enhances the cross-linking to TnC. Cross-linking to both TnC and TnT is reduced by prior phosphorylation of the TnI. In binary complexes the mutant TnIs cross-link to both the isolated TnC N-domain and whole TnC. Cyanogen bromide digestion of the covalent TnI-TnC complex formed from intact troponin demonstrates that cross-linking is predominantly to the N-terminal domain of TnC.  相似文献   

19.
The inhibitory region of troponin I (TnI) plays a central regulatory role in the contraction and relaxation cycle of skeletal and cardiac muscle through its Ca(2+)-dependent interaction with actin. Detailed structural information on the interface between TnC and this region of TnI has been long in dispute. We have used fluorescence resonance energy transfer (FRET) to investigate the global conformation of the inhibitory region of a full-length TnI mutant from cardiac muscle (cTnI) in the unbound state and in reconstituted complexes with the other cardiac troponin subunits. The mutant contained a single tryptophan residue at the position 129 which was used as an energy transfer donor, and a single cysteine residue at the position 152 labeled with IAEDANS as energy acceptor. The sequence between Trp129 and Cys152 in cTnI brackets the inhibitory region (residues 130-149), and the distance between the two sites was found to be 19.4 A in free cTnI. This distance was insensitive to reconstitution of cTnI with cardiac troponin T (cTnT), cTnC, or cTnC and cTnT in the absence of bound regulatory Ca(2+) in cTnC. An increase of 9 A in the Trp129-Cys152 separation was observed upon saturation of the Ca(2+) regulatory site of cTnC in the complexes. This large increase suggests an extended conformation of the inhibitory region in the interface between cTnC and cTnI in holo cardiac troponin. This extended conformation is different from a recent model of the Ca(2+)-saturated skeletal TnI-TnC complex in which the inhibitory region is modeled as a beta-turn. The observed Ca(2+)-induced conformational change may be a switch mechanism by which movement of the regulatory region of cTnI to the exposed hydrophobic patch of the open regulatory N-domain of cTnC pulls the inhibitory region away from actin upon Ca(2+) activation in cardiac muscle.  相似文献   

20.
Paramecium generates a Ca2+ action potential and can be considered a one-cell animal. Rises in internal [Ca2+] open membrane channels that specifically pass K+, or Na+. Mutational and patch-clamp studies showed that these channels, like enzymes, are activated by Ca(2+)-calmodulin. Viable CaM mutants of Paramecium have altered transmembrane currents and easily recognizable eccentricities in their swimming behavior, i.e. in their responses to ionic, chemical, heat, or touch stimuli. Their CaMs have amino-acid substitutions in either C- or N-terminal lobes but not the central helix. Surprisingly, these mutations naturally fall into two classes: C-lobe mutants (S101F, I136T, M145V) have little or no Ca(2+)-dependent K+ currents and thus over-react to stimuli. N-lobe mutants (E54K, G40E+D50N, V35I+D50N) have little or no Ca(2+)-dependent Na+ current and thus under-react to certain stimuli. Each mutation also has pleiotropic effects on other ion currents. These results suggest a bipartite separation of CaM functions, a separation consistent with the recent studies of Ca(2+)-ATPase by Kosk-Kosicka et al. [41, 55]. It appears that a major function of Ca(2+)-calmodulin in vivo is to orchestrate enzymes and channels, at or near the plasma membrane. The orchestrated actions of these effectors are not for vegetative growth at steady state but for transient responses to stimuli epitomized by those of electrically excitable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号