首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The smooth muscle cell is the predominant cell type of the arterial media. In the adult vascular system, smooth muscle cells are found primarily in the contractile phenotype, but following injury or during atherosclerotic plaque formation the secretory synthetic phenotype is expressed. Recently it has been shown that gap junction connexin43 messenger RNA levels are six times higher in cultured smooth muscle cells in the synthetic phenotype than in intact aorta. We have modulated rabbit aortic smooth muscle cells in culture between the synthetic phenotype and one resembling the contractile phenotype, and correlated gap junction expression with phenotype. A dual labelling technique with antibodies against smooth muscle myosin and a synthetic peptide constructed to match a portion of the connexin43 gap junction protein was used for these experiments. Gap junctions are numerous between synthetic phenotype cells but few are observed between contractile cells. Rat aortic smooth muscle cells were also cultured and the growth and structure of gap junctions followed in the synthetic phenotype by use of freeze-fracture electron microscopy and immunohistochemical techniques. Junctional plaques are similar in structure to those observed in cardiac muscle, their size and number increasing with time in culture. The increased numbers of gap junctions between synthetic phenotype smooth muscle cells may be important during vessel development, following injury, or in atherosclerotic plaque formation.  相似文献   

2.
3.
To study the aggregation of cell-to-cell channels into gap junctions at individual cell-cell contacts, we transfected cells with an expression vector for a chimeric protein composed of the cell-to-cell channel protein connexin43 and a green fluorescent protein. The chimeric channel protein was visualized in the fluorescence microscope and was found to form gap junctions at the cell-cell contacts just like wild-type connexin43. Cells expressing the chimeric protein had functional cell-to-cell channels. Using timelapse videomicroscopy on live cells we observed individual gap junctions over long periods and recorded the time course of aggregation of the chimeric channel protein into gap junctions at newly formed cell-cell contacts. We found that individual small gap junctions were very dynamic, moving about or becoming assembled and disassembled in the course of minutes. Larger gap junctions were more stable than small punctate ones. In control condition, stable new gap junctions were not formed during observation times of 30 min or longer. But at elevated levels of cyclic adenosine monophosphate, the chimeric channel protein began aggregating at new junctions 5-10 minutes after cell-cell contact and continued to concentrate there for at least one hour. Also already established junctions grew in size. The fluorescent chimeric channel protein will be an excellent tool to investigate the regulation of trafficking of connexin from and to the membrane and the mechanism of connexin channel aggregation into gap junctions.  相似文献   

4.
Murine connexin 40 (Cx40) and connexin 43 (Cx43) do not form functional heterotypic gap junction channels. This property may contribute to the preferential propagation of action potentials in murine conductive myocardium (expressing Cx40) which is surrounded by working myocardium, expressing Cx43. When mouse Cx40 and Cx43 were individually expressed in cocultured human HeLa cells, no punctate immunofluorescent signals were detected on apposed plasma membranes between different transfectants, using antibodies specific for each connexin, suggesting that Cx40 and Cx43 hemichannels do not dock to each other. We wanted to identify domains in these connexin proteins which are responsible for the incompatibility. Thus, we expressed in HeLa cells several chimeric gene constructs in which different extracellular and intracellular domains of Cx43 had been spliced into the corresponding regions of Cx40. We found that exchange of both extracellular loops (E1 and E2) in this system (Cx40*43E1,2) was required for formation of homotypic and heterotypic conductive channels, although the electrical properties differed from those of Cx40 or Cx43 channels. Thus, the extracellular domains of Cx43 can be directed to form functional homo- and heterotypic channels. Another chimeric construct in which both extracellular domains and the central cytoplasmic loop (E1, E2, and C2) of Cx43 were spliced into Cx40 (Cx40*43E1,2,C2) led to heterotypic coupling only with Cx43 and not with Cx40 transfectants. Thus, the central cytoplasmic loop of Cx43 contributed to selectivity. A third construct, in which only the C-terminal domain (C3) of Cx43 was spliced into Cx40, i.e., Cx40*43C3, showed neither homotypic nor heterotypic coupling with Cx40 and Cx43 transfectants, suggesting that the C-terminal region of Cx43 determined incompatibility.  相似文献   

5.
6.
Our previous work has shown that in vascular tissues the elastic medial regions express high levels of the gap junctional protein, connexin43, but low levels of desmin, while the muscular medial regions express low levels of connexin43 but high levels of desmin. It is uncertain, however, whether this regional difference at the tissue level extends down to the level of the individual cell, or reflects an averaged relationship of groups of cells of different connexin43 and desmin expression. The present study has addressed this question using cultured porcine aortic smooth muscle cells. Immunoconfocal microscopic analysis of single-labeled cells showed that while smooth muscle alpha-actin, calponin and vimentin were positively labeled in the majority of medial smooth muscle cells both in intact porcine aorta and corresponding cultured cells, desmin and connexin43 labeling was highly heterogeneous. In the cultured cells, 0.3-0.5% of cells were found to be desmin-positive, and quantitative analysis after double labeling for desmin and connexin43 revealed that the desmin-positive cells were smaller, and contained significantly lower numbers and smaller sizes of connexin43 gap-junctional spots than did desmin-negative cells. Our findings demonstrate that an inverse expression pattern of connexin43 and desmin holds true at the level of the individual cell. This suggests a close relationship between intrinsic phenotypic control and the regulation of connexin43 expression in the arterial smooth muscle cell.  相似文献   

7.
 The degree of immunoreactive connexin43 (Cx43) in rat lung was evaluated during the development of radiation-induced pulmonary fibrosis in rat by a double immunofluorescence technique using polyclonal antisera to Cx43 and monoclonal antibodies to cytokeratins on cryostat sections. In normal rat lungs, Cx43 was detected in pneumocytes type II and I, in large blood vessel endothelia, in peribronchial smooth muscle cells, and in some peribronchial and perivascular interstitial cells. As early as 1 week after irradiation, enhanced immunoreactivity for Cx43 in the epithelial cells was detected. In severely injured lungs (about 3 months after irradiation), Cx43 was found also in the cytoplasm of type II pneumocytes. These findings were confirmed by western blot data. Western blot analysis also revealed increased phosphorylation of Cx43. It remains to be investigated whether the increased content of Cx43 in irradiated rat lung may be due to an enhanced number of gap junctions between type I and II alveolar epithelial cells. Accepted: 20 May 1996  相似文献   

8.
We examined the expression and function of gap junctions in two rat osteoblastic cell lines, ROS 17/2.8 and UMR 106-01. The pattern of expression of gap junction proteins in these two cell lines was distinct: ROS cells expressed only connexin43 on their cell surface, while UMR expressed predominantly connexin45. Immunoprecipitation and RNA blot analysis confirmed the relative quantitation of these connexins. Microinjected ROS cells passed Lucifer yellow to many neighboring cells, but UMR cells were poorly coupled by this criterion. Nevertheless, both UMR and ROS cells were electrically coupled, as characterized by the double whole cell patch-clamp technique. These studies suggested that Cx43 in ROS cells mediated cell-cell coupling for both small ions and larger molecules, but Cx45 in UMR cells allowed passage only of small ions. To demonstrate that the expression of different connexins alone accounted for the lack of dye coupling in UMR cells, we assessed dye coupling in UMR cells transfected with either Cx43 or Cx45. The UMR/Cx43 transfectants were highly dye coupled compared with the untransfected UMR cells, but the UMR/Cx45 transfectants demonstrated no increase in dye transfer. These data demonstrate that different gap junction proteins create channels with different molecular permeabilities; they suggest that different connexins permit different types of signalling between cells.  相似文献   

9.
Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca(2+)-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca(2+) influx reduced Cx43 gap junction conductance (G(j)) by 95%, while increasing cytosolic Ca(2+) concentration threefold. By contrast, Cx40 G(j) declined by <20%. The Ca(2+)-induced decline in Cx43 G(j) was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca(2+)-free extracellular solution, if Ca(2+) chelation was commenced before complete uncoupling, after which g(j) was only 60% recoverable. The Cx43 CL(136-158) mimetic peptide, but not the scrambled control peptide, or Ca(2+)/CaM-dependent kinase II 290-309 inhibitory peptide also prevented the Ca(2+)/CaM-dependent decline of Cx43 G(j). Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca(2+)/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca(2+)/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca(2+) regulatory properties of Cx43 and Cx40.  相似文献   

10.
Antipeptide antibodies directed to residues 55 to 66 (NTQQPGCENVCY) of connexin43 (cx43) specifically recognize this protein on Western blots of intact and urea-split gap junctions isolated from rat heart. These antibodies detect a single protein of 43 kDa, corresponding to cx43, on Western blots of whole fractions of various vertebrate hearts. Immunogold labeling by electron microscopy shows that the epitopes recognized by these antibodies are not localized on the cytoplasmic surfaces of intact gap junctions but only at the edges of these junctions. In urea-split gap junctions the gold particles are seen in the junctional space, associated with the extracellular faces of junctional membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses of rat heart gap junctions treated with trypsin show that they are constituted with either two polypeptides of Mr 12,000 and 14,000 or a single polypeptide of Mr 22,000 according to whether the analyses are performed under reducing or non-reducing conditions, respectively. The antibodies directed to residues 55 to 66 of cx43 cross-react with both the 12 and 22 kDa polypeptides. These results suggest that the two protected domains of 12 and 14 kDa which contain the first extracellular loop and a putative second extracellular loop, respectively, are linked by disulfide bonds. In adult rat heart sections analyzed by indirect immunofluorescence the intercalated discs are labeled with antibodies directed to a cytoplasmic carboxy-terminal domain of cx43 (El Aoumari et al., J. Membr. Biol. 115, 229-240 (1990)). The same intercalated discs are also labeled in adjacent sections incubated with the antibodies directed to residues 55 to 66. Two hypotheses might explain these results: either the antibodies have access to the extracellular domain of cx43 molecules localized at the edges of the gap junctions, or cx43 molecules are present in the non-junctional membranes of the intercalated discs.  相似文献   

11.
Abstract

q-stimulation reduces intercellular coupling within 10 min via a decrease in the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2), but the mechanism is unknown. Here we show that uncoupling in rat cardiomyocytes after stimulation of α-adrenergic Gαq-coupled receptors with norepinephrine is prevented by proteasomal and lysosomal inhibitors, suggesting that internalization and possibly degradation of connexin43 (Cx43) is involved. Uncoupling was accompanied by increased Triton X-100 solubility of Cx43, which is considered a measure of the non-junctional pool of Cx43. However, inhibition of the proteasome and lysosome further increased solubility while preserving coupling, suggesting that communicating gap junctions can be part of the soluble fraction. Ubiquitination of Cx43 was also increased, and Cx43 co-immunoprecipitated with the ubiquitin ligase Nedd4. Conclusions: Norepinephrine increases ubiquitination of Cx43 in cardiomyocytes, possibly via Nedd4. We suggest that Cx43 is subsequently internalized, which is preceded by acquired solubility in Triton X-100, which does not lead to uncoupling per se.  相似文献   

12.
Gαq-stimulation reduces intercellular coupling within 10 min via a decrease in the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2), but the mechanism is unknown. Here we show that uncoupling in rat cardiomyocytes after stimulation of α-adrenergic Gαq-coupled receptors with norepinephrine is prevented by proteasomal and lysosomal inhibitors, suggesting that internalization and possibly degradation of connexin43 (Cx43) is involved. Uncoupling was accompanied by increased Triton X-100 solubility of Cx43, which is considered a measure of the non-junctional pool of Cx43. However, inhibition of the proteasome and lysosome further increased solubility while preserving coupling, suggesting that communicating gap junctions can be part of the soluble fraction. Ubiquitination of Cx43 was also increased, and Cx43 co-immunoprecipitated with the ubiquitin ligase Nedd4. Conclusions: Norepinephrine increases ubiquitination of Cx43 in cardiomyocytes, possibly via Nedd4. We suggest that Cx43 is subsequently internalized, which is preceded by acquired solubility in Triton X-100, which does not lead to uncoupling per se.  相似文献   

13.
Transition of arterial smooth muscle cells from the contractile to the synthetic phenotype in vivo is associated with up-regulation of the gap-junctional protein, connexin43 (Cx43). However, the role of increased Cx43 expression in relation to the characteristic features of the synthetic phenotype – altered growth, differentiation or synthetic activity – has not previously been defined. In the present study, growth was induced in cultured human aortic smooth muscle cells by treatment with thrombin and with PDGF-bb; growth arrest was induced by serum deprivation and contact inhibition. Alterations in Cx43 expression and gap-junctional communication were analyzed in relation to expression of markers for contractile differentiation and extracellular matrix synthesis. Treatment with thrombin, but not PDGF-bb, led to up-regulation of Cx43 gap junctions, increased synthetic activity yet also enhanced contractile differentiation. Inhibition of growth by deprivation of serum growth factors in sub-confluent cultures had no effect on Cx43 expression or contractile differentiation. Growth arrest by contact inhibition led to progressive reduction in Cx43 expression, in parallel with progressive increase in expression of differentiation markers but no alteration in synthetic activity. Of a range of stimuli examined, only thrombin had the combined effect of increasing Cx43 gap-junction communication, growth and synthesis, yet it also enhanced contractile differentiation. Down-regulation of Cx43 and improved contractile differentiation occurred only when growth arrest was induced through the contact–inhibition pathway, though, in this instance, synthesis remained undiminished. We conclude that Cx43 levels, though having common correlates, are not exclusively linked to the cell phenotype or the state of growth.  相似文献   

14.
Summary The tunica muscularis of the proximal intestine of the loach consisted of intermingling striated and smooth muscle cells without forming any distinct sublayers. Close contacts devoid of intervention by a basal lamina sometimes occurred between these different types of muscle cells. Gap junctions were occasionally found between heterologous as well as homologous muscle cells. In freeze-fracture replicas, striated muscle cells were distinguished from smooth muscle cells by numerous, evenly distributed subsurface caveolae. These were relatively rare and linearly arranged in smooth muscle cells. Variously-sized and -formed aggregations of connexon particles were found in the protoplasmic fracture-face of both muscle cells. Striated muscle cells had aggregates of connexon particles taking the form of either a small solid polygon or an annulus with a particle-free central region. In smooth muscle cells, the particles were arranged either in variously-sized patches or in straight lines. Topologically, heterologous gap junctions observed in ultrathin section were thought to correspond to the small patchy aggregations. Striated muscle cells in the gut had neuromuscular junctions, which differed morphologically from cholinergic nerve terminals at neuromuscular junctions of typical skeletal muscle cells. The smooth muscle cells had close apposition with axonal terminals containing many granular vesicles and a variable number of small, clear vesicles. Occasionally, a cholinergic-type axonal terminal with a presynaptic active site was found close to a smooth muscle cell.  相似文献   

15.
Gap junctions (GJs) play an important role in the control of bladder contractile response and in the regulation of various immune inflammatory processes. Here, we investigated the possible interaction between inflammation and GJs in bladder smooth muscle cells (BSMCs). Stimulation of BSMCs with IL1β and TNFα increased connexin43 (Cx43) expression and function, which was associated with increased phosphorylation of vasodilator-stimulated phosphoprotein. Inhibition of PKA with H89 or down-regulation of CREB with specific siRNAs largely abolished the Cx43-elevating effect. Further analysis revealed that IL1β/TNFα induced NFκB-dependent inducible NO synthase (iNOS) expression. Inhibition of iNOS with G-nitro-l-arginine methyl ester abrogated and an exogenous NO donor mimicked the effect of the cytokines on Cx43. Intraperitoneal injection of LPS into mice also induced bladder Cx43 expression, which was largely blocked by an iNOS inhibitor. Finally, the elevated Cx43 was found to negatively regulate iNOS expression. Dysfunction of GJs with various blockers or down-regulation of Cx43 with siRNA significantly potentiated the expression of iNOS. Fibroblasts from Cx43 knock-out (Cx43(-/-)) mice also displayed a significantly higher response to the cytokine-induced iNOS expression than cells from Cx43 wild-type (Cx43(+/+)) littermates. Collectively, our study revealed a previously unrecognized reciprocal regulation loop between cytokine-induced NO and GJs. Our findings may provide an important molecular mechanism for the symptoms of bladder infection. In addition, it may further our understanding of the roles of GJs in inflammatory diseases.  相似文献   

16.
17.
Connexin 43 (Cx43alpha1) gap junction has been shown to have an essential role in mediating functional coupling of neural crest cells and in modulating neural crest cell migration. Here, we showed that N-cadherin and wnt1 are required for efficient dye coupling but not for the expression of Cx43alpha1 gap junctions in neural crest cells. Cell motility was found to be altered in the N-cadherin-deficient neural crest cells, but the alterations were different from that elicited by Cx43alpha1 deficiency. In contrast, wnt1-deficient neural crest cells showed no discernible change in cell motility. These observations suggest that dye coupling may not be a good measure of gap junction communication relevant to motility. Alternatively, Cx43alpha1 may serve a novel function in motility. We observed that p120 catenin (p120ctn), an Armadillo protein known to modulate cell motility, is colocalized not only with N-cadherin but also with Cx43alpha1. Moreover, the subcellular distribution of p120ctn was altered with N-cadherin or Cx43alpha1 deficiency. Based on these findings, we propose a model in which Cx43alpha1 and N-cadherin may modulate neural crest cell motility by engaging in a dynamic cross-talk with the cell's locomotory apparatus through p120ctn signaling.  相似文献   

18.
Cadherins have been thought to facilitate the assembly of connexins (Cxs) into gap junctions (GJs) by enhancing cell-cell contact, however the molecular mechanisms involved in this process have remained unexplored. We examined the assembly of GJs composed of Cx43 in isogenic clones derived from immortalized and nontransformed rat liver epithelial cells that expressed either epithelial cadherin (E-Cad), which curbs the malignant behavior of tumor cells, or neuronal cadherin (N-Cad), which augments the invasive and motile behavior of tumor cells. We found that N-cad expression attenuated the assembly of Cx43 into GJs, whereas E-Cad expression facilitated the assembly. The expression of N-Cad inhibited GJ assembly by causing endocytosis of Cx43 via a nonclathrin-dependent pathway. Knock down of N-Cad by ShRNA restored GJ assembly. When both cadherins were simultaneously expressed in the same cell type, GJ assembly and disassembly occurred concurrently. Our findings demonstrate that E-Cad and N-Cad have opposite effects on the assembly of Cx43 into GJs in rat liver epithelial cells. These findings imply that GJ assembly and disassembly are the down-stream targets of the signaling initiated by E-Cad and N-Cad, respectively, and may provide one possible explanation for the disparate role played by these cadherins in regulating cell motility and invasion during tumor progression and invasion.  相似文献   

19.
We investigated the phenotypic features of cardiomyocytes, including the gap junctions, in the myocardial sleeve of thoracic veins. Single cardiomyocytes, isolated from the canine pulmonary veins (PV) and superior vena cava (SVC) using digestive enzymes, were examined by immunoconfocal microscopy using antisera against connexin43 (Cx43), Cx40, and other cell markers. The results showed that isolated cardiomyocytes displayed rod shapes of various sizes, ranging from <50 microm to >200 microm in length, and all the cells expressed alpha-actinin and vinculin. Gap junctions made of various amounts of Cx43 and Cx40 were found at the cell borders. These two connexins were extensively co-localized. Comparison between the thoracic veins showed that cells of the SVC contained more Cx43 gap junctions (total Cx43 gap junctions area per cell surface area, 4.0 +/- 0.2% vs 1.5 +/- 0.2%; p<0.01). In addition, for single-nucleus cells, those from the PV were longer (103.7 +/- 3.6 vs 85.0 +/- 3.1 microm; p<0.01) but narrower (14.4 +/- 0.5 vs 16.9 +/- 0.9 microm; p<0.01). In conclusion, canine thoracic veins contain cardiomyocytes with differences in shape and gap junctions, suggesting that the electrical conduction properties may be different between the thoracic veins.  相似文献   

20.
The spatio-temporal expression of gap junction connexins (Cx) was investigated and correlated with the progression of cell cycle control in regenerating soleus muscle of Wistar rats. Notexin caused a selective myonecrosis followed by the complete recapitulation of muscle differentiation in vivo, including the activation, commitment, proliferation, differentiation and fusion of myogenic cells. In regenerating skeletal muscle, only Cx43 protein, out of Cx-s 26, –32, –37, –40, –43 and –45, was detected in desmin positive cells. Early expression of Cx43 in the proliferating single myogenic progenitors was followed by a progressive upregulation in interacting myoblasts until syncytial fusion, and then by a rapid decline in multinucleate myotubes. The significant upregulation of Cx43 gap junctions in aligned myoblasts preceding fusion was accompanied by the widespread nuclear expression of cyclin-dependent kinase inhibitors p21waf1/Cip1 and p27kip1 and the complete loss of Ki67 protein. The synchronized exit of myoblasts from the cell cycle following extensive gap junction formation suggests a role for Cx43 channels in the regulation of cell cycle control. The potential of Cx43 channels to stimulate p21waf1/Cip1 and p27kip1 is known. In the muscle, proving the involvement of Cx43 in either a direct or a bystander cell cycle regulation requires functional investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号