首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ) (2.27 μM), 6-benzylaminopurine (BA) (2.22 μM) and indole-3-butyric acid (IBA) (0.49 μM). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA (4.44 μM), kinetin (Kn) (2.33 μM), indole-3-acetic acid (IAA) (1.43 μM), and gibberellic acid (GA3) (0.72 μM). Well-developed shoots were rooted on MS medium supplemented with IBA (0.5 μM) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.  相似文献   

2.
An effective system for in vitro regeneration of adventitious shoots from callus for the transformation or mutation of gerbera was developed. Callus was produced from petioles of the youngest 3–4 leaves detached from auxillary shoots produced in vitro. Induction medium, on which leaves were incubated over 3 or 6 days, contained 2.3 μM thidiazuron and 0.53 μM α-naphthaleneacetic acid. Explants were than transferred to one of three regeneration media with lower levels of growth regulators. Regeneration was quantified over four (4-weeks each) passages at the time of explant transfer to fresh medium. Direct shoot regeneration occurred during the first 4 weeks, and after these shoots were discarded a semi-compact organogenic callus was produced. Effectiveness of shoot regeneration depended on four criteria: the cultivar (three cultivars were tested), the sequence of passage on regeneration medium, the growth regulators in regeneration medium and the duration of the induction period. Regeneration potential from calli of all cultivars increased from the first to the fourth passage. Duration of the incubation period on induction medium (3 or 6 days) influenced regeneration to varying degrees, depending on the cultivar used and the regeneration medium contents. There were no differences between two of the regeneration media – B, containing 2.2 μM 6-benzyladenine and 0.3 μM indole-3-acetic acid and C, containing 4.4 μM 6-benzyladenine, 4.6 μM zeatin and 0.6 μM indole-3-acetic acid. Cultivar Mariola was the most productive and regenerated more than seven shoots per callus in the fourth passage. Regeneration on medium B was further evaluated on four additional gerbera cultivars. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

4.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

5.
A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 μM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1–2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 μM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.  相似文献   

6.
Nodular meristematic callus was induced on the basal cut surface of apical shoot explants of salvia cultured on Murashige and Skoog (MS) medium supplemented with 4.5, 13.5, or 22.5 μM thidiazuron (TDZ). Cultures were incubated in the dark for 1 wk and then transferred to light conditions for 4 wk. A higher percentage of explants developing callus was observed on medium containing either 4.5 or 13.5 μM TDZ, although explants on 4.5 μM developed larger calluses. The callus was maintained on medium containing 4.5 μM TDZ and 0.45 mM ascorbic acid. Shoot differentiation, after each of three successive maintenance passages, was induced from callus grown on medium containing either 4.4 or 8.8 μM benzyladenine (BA). A greater number of shoots were harvested from callus differentiated on BA (4.4 or 8.8 μM) medium with 0.45 mM ascorbic acid added. Shoots developed roots on MS medium supplemented with 4.9 μM of indole-3-butyric acid. The addition of ascorbic acid to the shoot differentiation medium enhanced rooting, number of roots per shoot, and survival rate. Approximately 75% in vitro plantlets were acclimatized to ex vitro conditions. Histological investigations confirmed both adventitious meristem initiation during the callus induction phase, and subsequent organogenic shoot development on the differentiation medium. The novel protocol for the meristematic callus induction and plant regeneration in this study may be useful for biotechnological applications for salvia improvement via genetic transformation or mutagenesis and in vitro propagation approaches.  相似文献   

7.
A mass in vitro propagation system for Bacopa monniera (L.) Wettst. (Scrophulariaceae), a medicinally important plant, has been developed. A range of cytokinins have been investigated for multiple shoot induction with node, internode and leaf explants. Of the four cytokinins (6-benzyladenine, thidiazuron, kinetin and 2-isopentenyladenine) tested thidiazuron (6.8 μM) and 6-benzyladenine (8.9 μM) proved superior to other treatments. Optimum adventitious shoot buds induction occurred at 6.8 μM thidiazuron where an average of 93 shoot buds were produced in leaf explants after 7 weeks of incubation. However, subculture of leaf explants on medium containing 2.2 μM benzyladenine yielded a higher number (129.1) of adventitious shoot buds by the end of third subculture. The percentage shoot multiplication (100%) as well as the number of shoots per explant remained the high during the first 3 subculture cycles, facilitating their simultaneous harvest for rooting. In vitro derived shoots were elongated on growth regulator-free MS medium and exhibited better rooting response on medium containing 4.9 μM IBA. After a hardening phase of 3 weeks, there was an almost 100% transplantation success in the field. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Summary A protocol has been developed for high-frequency shoot regeneration and plant establishment of Tylophora indica from petiole-derived callus. Optimal callus was developed from petiole explants on Murashige and Skoog basal medium supplemented with 10μM2,4-dichlorophenoxyacetic acid +2,5μM thidiazuron (TDZ). Adventitious shoot induction was achieved from the surface of the callus after transferring onto shoot induction medium. The highest rate (90%) of shoot multiplication was achieved on MS medium containing 2.5μM TDZ. Individual elongated shoots were rooted best on halfstrength MS medium containing 0.5μM indole-3-butyric acid (IBA). When the basal cut ends of the in vitro-regenerated shoots were dipped in 150μM IBA for 30 min followed by transplantation in plastic pots containing sterile vermiculite, a mean of 4.1 roots per shoot developed. The in vitro-raised plantlets with well-developed shoot and roots were successfully established in earthen pots containing garden soil and grown in a greenhouse with 100% survival. Four months after transfer to pots, the performance of in vitro-propagated plants of T. indica was evaluated on the basis of selected physiological parameters and compared with ex vitro plants of the same age.  相似文献   

9.
Internode explants collected from in vitro grown shoots of two clones of Fagus sylvatica L. (European beech) and five clones of F. orientalis Lipski (Oriental beech) were used to evaluate their bud regeneration capacity. Adventitious shoot-buds formed on callus, which developed from internode segments cultured in a Woody Plant Medium supplemented with different concentrations of either thidiazuron (TDZ) or benzyladenine (BA). After 4 weeks of culture on induction media, the explants were transferred to a proliferation medium supplemented with 2.2 μM BA, 9.1 μM zeatin and 2.9 μM indole-3-acetic acid (IAA) for another 8 weeks. Medium containing TDZ was much more efficient than medium containing BA in inducing adventitious buds, the optimal TDZ concentration being 4.5 μM and the optimal BA concentration 17.8 μM. Genotypic variation in shoot regeneration capacity was observed among the two Fagus species and between clones within each species, with a significant interaction between TDZ concentration and genotype regarding mean bud number. Thidiazuron induction medium supplemented with a range of individual auxins was investigated, and it was found that IAA or indole-3-butyric acid at 2.9 μM enhanced the bud forming capacity of explants. Morphogenic response varied significantly with the position of the internode along the stem. The highest regeneration potential was obtained from apical internodes, while those distal to the apex were the least productive. Elongated shoots of adventitious origin can be readily proliferated by axillary branching. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Multiple Shoot Regeneration from Immature Embryo Explants of Papaya   总被引:1,自引:1,他引:0  
A simple and rapid method for multiple shoot formation in vitro from immature embryo axis explants of Carica papaya L. cvs. Honey Dew, Washington and Co2 is described. Multiple shoot regeneration was achieved by culture of the explants on modified Murashige and Skoog (MS) medium supplemented either with thidiazuron (TDZ; 0.45–22.7 μM) or a combination of benzylaminopurine (BAP; 0.2 – 8.84 μM) and naphthalene acetic acid (NAA; 0.5 – 2.64 μM). Highest frequency of shoot regeneration occurred on medium supplemented either with 2.25 μM TDZ or a combination of BAP (4.4 μM) and NAA (0.5 μM). Composition of the basal media influenced the frequency of multiple shoot initiation. Stunted shoots regenerated at 4.5 μM and higher concentrations of TDZ. Such shoots could, however, be elongated by transfer to medium containing 5.7 μM GA3. Rooting of the regenerated shoots was achieved in presence of indolebutyric acid (IBA; 4.92 – 19.68 μM), however, least response was in presence of 14.7 μM IBA. Rooted plants were hardened and transferred to pots. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
An in vitro propagation protocol has been developed from mature trees of Pittosporum napaulensis. The best bud proliferation (83.1%), shoot number (21 axillary shoots/ explant) and shoot length (5.5 cm) was achieved in Murashige and Skoog (MS) medium supplemented with 5.0 μM N−6 benzyladenine and 0.1 μM α- naphthalene acetic acid. Of the three cytokinins tested (N−6 benzyladenine, kinetin and thidiazuron), N−6 benzyladenine proved to be the best for shoot induction. Shoot regeneration potential varied among genotypes. Regenerated shoots rooted after 48 hours treatment on half-strength MS liquid medium supplemented with 20 μM indole-3-butyric acid. Rooted shoots transferred to 120 g (w/v) soilrite + sand + soil (1:1:1) mixture showed 70% survival. Twenty-one plantlets are growing well in green house conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
An efficient protocol was developed for micropropagation of an economically important timber-yielding multipurpose tree, Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes (CNs) derived from 18-d-old axenic seedlings on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ) (0.1–10 μM). The highest shoot regeneration frequency (90%) and maximum number (15.2 ± 0.20) of shoots per explant was recorded on MS medium amended with 0.4 μM TDZ. Continuous presence of TDZ inhibited shoot elongation. In the primary medium, TDZ-initiated cultures were transferred to the secondary medium supplemented with another cytokinin, 6-benzyladenine (BA), for shoot growth and elongation. Maximum (90%) shoot elongation with an average shoot length of 5.4 ± 0.06 cm was observed at 5 μM BA. To further enhance the number of shoots per explant, mother tissue was repeatedly subcultured on fresh shoot induction medium after each harvest of newly formed shoots. Thus, by adopting this strategy, an average of 44 shoots per explant could be obtained. About 65% of in vitro regenerated shoots produced a maximum number (4.4 ± 0.2) of roots per shoot by a two-step culture procedure employing pulse treatment and subsequent transfer of treated shoots to a low concentration of 0.2 μM indole-3-butyric acid along with phloroglucinol (3.96 μM). The in vitro-raised plantlets were successfully acclimatized first under culture room conditions, then to greenhouse with 70% survival rate.  相似文献   

13.
This report describes in vitro shoot induction and plant regeneration from mature nodal explants of Vitex trifolia L. on Murashige and Skoog (MS) medium fortified with benzylaminopurine (BAP), kinetin (KN), thidiazuron (TDZ), adenine (ADE), and 2-isopentenyladenine (2-iP) (0.25 – 10.0 μM). Multiple shoots differentiated directly without callus mediation within 3 weeks when explants were cultured on medium supplemented with cytokinins. The maximum number of shoots (9 shoots per explant) was developed on a medium supplemented with 5.0 μM BAP. Shoot cultures was established repeatedly subculturing the original nodal explant on the same medium. Rooting of shoots was achieved on half strength MS medium supplemented with 0.5 μM naphthaleneacetic acid (NAA). Rooted plantlets transferred to pots containing autoclaved soil and vermiculite mixture (1:1) showed 90 % survival when transferred to outdoor.  相似文献   

14.
Summary Sugarcane (Saccharum spp. hybrid cv. CP 84-1198) embryogenic calluses were induced from young leaves cultured on modified Murashige and Skoog basal medium supplemented with 13.6 μM 2,4-dichlorophenoxyacetic acid. Five concentrations, 0.5, 1.0, 2.5, 5.0, and 10.0 μM, of five different growth regulators, 6-benzylaminopurine, kinetin, 6-γ,γ-(dimethylallylamino)purine, zeatin, and thidiazuron, were tested with or without 22.5 μM α-naphthaleneacetic acid to compare their ability to induce regeneration from embryogenic callus. After 4 wk on medium, the percentage of shoot meristem induction was evaluated, and after 10 wk the total number of shoots produced, as well as the percentage of shoots greater than 1 cm in length, was obtained. Although it had the lowest percentage of elongated shoots, medium containing thidiazuron alone performed better than all other growth regulators tested, with the highest percentage of shoot induction and the largest number of shoots, particularly at a concentration of 2.5 μM.  相似文献   

15.
Summary A protocol for in vitro propagation using direct induction of shoot buds from leaf explants of in vitro-raised shoots of Rosa damascena var. Jwala is reported. The present study is the first report on direct shoot regeneration in scented roses. Elite plants raised from nodal explants and maintained for over 2yr in vitro on a static liquid shoot multiplication Murashige and Skoog (MS) medium supplemented with 5.0 μM benzyladenine (BA) and 3% sucrose were used. Petioles from fully developed young leaves, obtained after 4 wk of pruning of old shoots, were found to be ideal for regeneration of shoots. Initially the explants were cultured in an induction medium [half-strength MS+3% sucrose+6.8μM thidiazuron+0.27 μM α-naphthaleneacetic acid (NAA)+17.7 μM AgNO3] and subsequently transferred to the regeneration medium (MS+2.25 μM BA+0.054 μM NAA) after 7, 14, 21, 28, and 35d. The highest shoot regeneration response (69%) was recorded when shoots were kept in the induction medium for 21 d and later transferred to regeneration medium. Histological studies revealed direct formation of shoot buds without the intervening callus phase. In vitro rooting of micro-shoots was accomplished within 2wk on half-strength MS liquid medium supplemented with 10.0 μM IBA and 3% sucrose for 1 wk in the dark and later transferred to hormone-free medium and kept in the light. Plantlets, remaining in the latter medium for 5–6 wk when transferred to soil, showed 90% survival.  相似文献   

16.
Summary Regeneration of adventitious shoots from the medicinal plant Nothapodytes foetida (Weight) Sleumer Syn. Mappia foetida (family Ieacinaceceae) has been achieved using different seedling explants. Direct, regeneration of shoot buds was observed in Murashige and Skoog's (MS) basal medium supplemented with various concentrations of thidiazuron. The optimum levels of thidiazuron concentrations were 0.91–4.45 μM. Leaf explants formed more shoots followed by hypocotyls or cotyledons. The shoot buds elongated and rooted on MS basal medium with N6-benzyladenine (0.88–2.22 μM) and indole-3-butyric acid (0.49 μM).  相似文献   

17.
An efficient regeneration system for large-scale propagation of statice (Limonium altaica cv. Emille) was developed using leaves from mature plants. Leaf segments (5×5 mm sections) were cultured on Murashige and Skoog's medium supplemented with N6-benzyladenine (BA) and thidiazuron (TDZ) individually and in combination with indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (NAA). Prolific direct adventitious shoot regeneration occurred on most of the media. The best response in terms of frequency of shoot regeneration (99.5%) and number of shoots per explant (112 shoots per explant) was observed on medium supplemented with 2.85 μM IAA and 1.14 μM TDZ. The shoots rooted easily on half strength MS medium and MS medium with indole-3-butyric acid. In vitro propagated plants could be transferred to soil with survival rates of more than 95%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

19.
An in vitro regeneration system with a 100% efficiency rate was developed in peppermint [Mentha x piperita] using 5- to 7-mm-long second internode stem segments of 3-wk-old stock plants. Shoots developed at sites of excision on stem fragments either directly from the cells or via primary calluses. The optimal medium for maximum shoot initiation and regeneration contained Murashige and Skoog (MS) salts, B5 vitamins, thidiazuron (TDZ, 11.35 μM), ZT (4.54 μM), 10% coconut water (CW), 20 g l−1 sucrose, 0.75% agar, adjusted to pH 5.8. A frequency of 100% shoot initiation was achieved, with an average of 39 shoots per explant. This regeneration system is highly reproducible. The regenerated plants developed normally and were phenotypically similar to Black Mitcham parents.  相似文献   

20.
Summary Efficient shoot regeneration of sugarcane (Saccharum spp. hybrid cv. CP84-1198) from embryogenic callus cultures has been obtained using thidiazuron (TDZ). Callus was placed on modified Murashige and Skoog (MS) medium containing 2.3 μM 2,4-dichlorophenoxyacetic acid (2,4-D), or 9.3 μM kinetin and 22.3 μM naphthaleneacetic acid (NAA) and compared with the same MS medium supplemented with 0.5, 1.0, 2.5, 5.0 or 10.0 μMTDZ, A11 TDZ treatments resulted in faster shoot regeneration than the kinetin/NAA treatment, and more shoot production than either the 2,4-D or kinetin/NAA treatments. Maximum response, as determined by total number of shoots (26 per explant) and number of shoots greater than 1 cm (4 per explant) 4 wk after initiation, was obtained with 1.0 μM TDZ. The shoots rooted efficiently on MS medium supplemented with 19.7 μM indole-3-butyric acid (IBA). These results indicate that TDZ effectively stimulates sugarcane plant regeneration from embryogenic callus, and may be suitable to use in genetic transformation studies to enhance regeneration of transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号