首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the influence of hypochlorite (HOCl/OCl-) on plasma fibronectin (Fn) aggregation and examined an affinity of Fn aggregates to Fn specific antibodies. Human plasma Fn HOCl/OCl(-)-mediated modification was monitored with differential OD method and with measurements of tryptophan fluorescence followed by acrylamide quenching of tryptophan emission. Antibody fibronectin complex formation was examined in ELISA systems with chemiluminescence (CL) detection. Results were expressed as an average of three experiments performed in triplicate. Fn aggregation/fragmentation was monitored with dynamic light scattering method. It was showed that HOCl/OCl- mediated chlorination promotes Fn aggregation/fragmentation with concomitant oxidation of tryptophan moieties and dichlorotyrosine formation. Quenching experiments revealed that in chlorinated Fn the percentage of intact tryptophan moieties buried in the hydrophobic Fn core increases as compared to unchlorinated Fn. In general, ELISA experiments showed that chlorination of plasma Fn diminished the number of available epitopes but for lower HOCl/OCl- concentrations (1-2 mM) the reverse effect is observed--the number of accessible fibronectin epitopes is increased when Fn adopts extended conformation in complex with antibody. Our results suggest that HOCl/OCl(-)-mediated plasma Fn chlorination leads to the formation of soluble aggregates and is followed by refolding processes. Fn chlorination with low doses of HOCl/OCl- promotes extended Fn conformation which in turn increases affinity toward specific antibodies and may promote Fn-IgG cluster formation. Thus it seems possible that mildly chlorinated plasma Fn promotes formation of IgG clusters which in turn may activate neutrophils.  相似文献   

2.
Reactive oxygen species produced by activated neutrophils and monocytes are thought to be involved in mediating the loss of collagen and other matrix proteins at sites of inflammation. To evaluate their potential to oxidize the pyridinoline (Pyd) cross-links found in collagen types I and II, we reacted hydrogen peroxide (H(2)O(2)), hypochlorous acid/hypochlorite (HOCl/OCl(-)), and singlet oxygen (O(2)((1)delta g)) with the Pyd substitutes, pyridoxamine dihydrochloride and vitamin B(6), which share the same chemical structure and spectral properties of Pyd cross-links. Neither H(2)O(2) (125-500 microm) nor O(2)((1)delta g) (10-25 microm) significantly changed the spectral properties of pyridoxamine or vitamin B(6). Reaction of HOCl/OCl(-) (12.5-50 microm) with pyridoxamine at pH 7.2 resulted in a concentration-dependent appearance of two new absorbance peaks and a decrease in fluorescence at 400 nm (excitation 325 nm). The new absorbance peaks correlated with the formation of an N-chloramine and the product of its subsequent reaction with pyridoxamine. In contrast, the extent to which HOCl reacted with vitamin B(6), which lacks a primary amine group, was variable at this pH. At lysosomal pH 5.5, Cl(2)/HOCl/OCl(-) reacted with both pyridoxamine and vitamin B(6). Four of the chlorinated products of this reaction were identified by gas chromatography-mass spectrometry and included 3-chloropyridinium, an aldehyde, and several chlorinated products with disrupted rings. To evaluate the effects of Cl(2)/HOCl/OCl(-) on Pyd cross-links in collagen, we exposed bone collagen type I and articular cartilage type II to HOCl. Treatment of either collagen type with HOCl at pH 5. 0 or 7.2 resulted in the oxidation of amine groups and, for collagen type II, the specific decrease in Pyd cross-link fluorescence, suggesting that during inflammation both oxidations may be used by neutrophils and monocytes to promote the loss of matrix integrity.  相似文献   

3.
Amino acids present in blood plasma may be targets for oxidation and chlorination by HOCl/OCl(-). N-Chloroamino acids have been reported to be less reactive, but more selective than HOCl/OCl(-) in their reactions; therefore, they may act as secondary mediators of HOCl/OCl(-)-induced injury. This study compared the effects of five N-chloroamino acids (AlaCl, LysCl, SerCl, AspCl and PheCl) on erythrocytes with the action of HOCl/OCl(-). The N-chloroamino acids differed in stability and reactivity. They had a weaker haemolytic action than HOCl/OCl(-); HOCl/OCl(-), AlaCl and PheCl increased osmotic fragility of erythrocytes at a concentration of 1 mm. Oxidation of glutathione, formation of protein-glutathione mixed disulphides and efflux of GSSG from erythrocytes were observed for erythrocytes treated with all the employed chloroderivatives, while increased oxidation of 2',7'-dichlorofluorescin was detected only after treatment of the cells with 1 mm HOCl/OCl(-), AlaCl and PheCl. Generally, the reactivity of at least some N-chloroamino acids may be not much lower with respect to HOCl/OCl(-).  相似文献   

4.
Reactive oxygen and nitrogen species have been implicated as mediators of mucosal injury in inflammatory bowel disease, but few studies have investigated protein oxidation in the inflamed mucosa. In this study, protein carbonyl formation on colonic mucosal proteins from mice was investigated following in vitro exposure of homogenates to iron/ascorbate, hydrogen peroxide, hypochloric acid (HOCl), or nitric oxide (*NO). Total carbonyl content was measured spectrophotometrically by derivatization with dinitrophenylhydrazine (DNPH), and oxidation of component proteins within the tissue was examined by Western blotting for DNPH-derivatized proteins using anti-dinitrophenyl DNP antibodies. These results were compared with protein carbonyl formation found in the acutely inflamed mucosa from mice with colitis induced by dextran sulfate sodium (DSS) administered at 5% w/v in the drinking water for 7 d. In vitro, carbonyl formation was observed after exposure to iron/ascorbate, HOCl and *NO. Iron/ascorbate (20 microM/20 mM) exposure for 5 h increased carbonyl groups by 80%, particularly on proteins of 48, 75-100, 116, 131, and 142 kDa. Oxidation by 0.1 and 0.5 mM HOCl did not increase total carbonyl levels, but Western blotting revealed carbonyl formation on many proteins, particularly in the 49-95 kDa region. After exposure to 1-10 mM HOCl, total carbonyl levels were increased by 0.5 to 12 times control levels with extensive cross-linking and fragmentation of proteins rich in carbonyl groups observed by Western blotting. In mice with acute colitis induced by DSS, protein carbonyl content of the inflamed mucosa was not significantly different from control mucosa, (7.80 +/- 1.05 vs. 8.43 +/- 0.59 nmo/mg protein respectively, p = .16 n = 8, 10); however, Western blotting analysis indicated several proteins of molecular weight 48, 79, 95, and 131 kDa that exhibited increased carbonyl content in the inflamed mucosa. These proteins corresponded to those observed after in vitro oxidation of normal intestinal mucosa with iron/ ascorbate and HOCl, suggesting that both HOCl and metal ions may be involved in protein oxidation in DSS-induced colitis. Identification and further analysis of the mucosal proteins susceptible to carbonyl modification may lead to a better understanding of the contribution of oxidants to the colonic mucosa tissue injury in inflammatory bowel disease.  相似文献   

5.
Activated human neutrophils secrete myeloperoxidase, which generates HOCl from H2O2 and Cl(-). We have found that various (2'-deoxy)nucleosides react with HOCl to form chlorinated (2'-deoxy)nucleosides, including novel 8-chloro(2'-deoxy)guanosine, 5-chloro(2'-deoxy)cytidine, and 8-chloro(2'-deoxy)adenosine formed in yields of 1.6, 1.6, and 0.2%, respectively, when 0.5 mM nucleoside reacted with 0.5 mM HOCl at pH 7.4. The relative chlorination, oxidation, and nitration activities of HOCl, myeloperoxidase, and activated human neutrophils in the presence and absence of nitrite were studied by analyzing 8-chloro-, 8-oxo-7,8-dihydro-, and 8-nitro-guanosine, respectively, using guanosine as a probe. 8-Chloroguanosine was always more easily formed than 8-oxo-7,8-dihydro- or 8-nitro-guanosine. Using electrospray ionization tandem mass spectrometry, we show that several chlorinated nucleosides including 8-chloro(2'-deoxy)guanosine are formed following exposure of isolated DNA or RNA to HOCl. Micromolar concentrations of tertiary amines such as nicotine and trimethylamine dramatically enhanced chlorination of free (2'-deoxy)nucleosides and nucleosides in RNA by HOCl. As the G-463A polymorphism of the MPO gene, which strongly reduces myeloperoxidase mRNA expression, is associated with a reduced risk of lung cancer, chlorination damage of DNA /RNA and nucleosides by myeloperoxidase and its enhancement by nicotine may be important in the pathophysiology of human diseases associated with tobacco habits.  相似文献   

6.
Susceptibility to experimental collagen-induced arthritis in rodents is dependent on MHC class II elements to bind peptides from the type II collagen (CII) molecule. Although a substantial body of data has been reported in mice defining these peptide Ags, little has been reported in rats. In this study, we investigate the locations and sequences of CII peptides, which are bound by RT1(u) molecules, expressed by diabetic-resistant, arthritis-susceptible Biobreeding rats, and, in turn, stimulate CII-specific T cells. By using overlapping and substituted peptide homologues of CII, we have identified and characterized an immunodominant and five subdominant epitopes on CII, which stimulate RT1(u)-restricted T cell proliferation. The immunodominant epitope, CII (186-192), contains a QGPRG core sequence, which was found in a subdominant epitope CII (906-916). Similar sequences containing single conservative substitutions were identified in three other epitopes. One, CII (263-272), contained a conservatively substituted R-->K substitution, whereas CII (880-889) and CII (906-916) contained nonconservative substitutions, i.e., P-->D and R-->M, respectively. Homologue peptides containing these sequences stimulated T cell proliferative responses, although less intensely than peptides containing CII (186-192). Substituting QGR residues in the QGPRG core with alanine, isoleucine, or proline reduced proliferation, as did substituting flanking E and G residues at the N terminus and E at the C terminus. Collectively, these data indicate that RT1(u)-restricted immunodominant and several subdominant epitopes on CII often share a QGPRG-like motif, with conservative substitutions present at either P or R positions. This motif is similar to one recognized by collagen-induced arthritis-susceptible HLA-DR1- and HLA-DR4-transgenic mice.  相似文献   

7.
Myeloperoxidase catalyses the conversion of H2O2 and Cl- to hypochlorous acid (HOCl). It also reacts with O2- to form the oxy adduct (compound III). To determine how O2- affects the formation of HOCl, chlorination of monochlorodimedon by myeloperoxidase was investigated using xanthine oxidase and hypoxanthine as a source of O2- and H2O2. Myeloperoxidase was mostly converted to compound III, and H2O2 was essential for chlorination. At pH 5.4, superoxide dismutase (SOD) enhanced chlorination and prevented formation of compound III. However, at pH 7.8, SOD inhibited chlorination and promoted formation of the ferrous peroxide adduct (compound II) instead of compound III. We present spectral evidence for a direct reaction between compound III and H2O2 to form compound II, and for the reduction of compound II by O2- to regenerate native myeloperoxidase. These reactions enable compound III and compound II to participate in the chlorination reaction. Myeloperoxidase catalytically inhibited O2- -dependent reduction of Nitro Blue Tetrazolium. This inhibition is explained by myeloperoxidase undergoing a cycle of reactions with O2-, H2O2 and O2-, with compounds III and II as intermediates, i.e., by myeloperoxidase acting as a combined SOD/catalase enzyme. By preventing the accumulation of inactive compound II, O2- enhances the activity of myeloperoxidase. We propose that, under physiological conditions, this optimizes the production of HOCl and may potentiate oxidant damage by stimulated neutrophils.  相似文献   

8.
Oxidized lipoproteins may play an important role in the pathogenesis of atherosclerosis. Elevated levels of 3-chlorotyrosine, a specific end product of the reaction between hypochlorous acid (HOCl) and tyrosine residues of proteins, have been detected in atherosclerotic tissue. Thus, HOCl generated by the phagocyte enzyme myeloperoxidase represents one pathway for protein oxidation in humans. One important target of the myeloperoxidase pathway may be high density lipoprotein (HDL), which mobilizes cholesterol from artery wall cells. To determine whether activated phagocytes preferentially chlorinate specific sites in HDL, we used tandem mass spectrometry (MS/MS) to analyze apolipoprotein A-I that had been oxidized by HOCl. The major site of chlorination was a single tyrosine residue located in one of the protein's YXXK motifs (where X represents a nonreactive amino acid). To investigate the mechanism of chlorination, we exposed synthetic peptides to HOCl. The peptides encompassed the amino acid sequences YKXXY, YXXKY, or YXXXY. MS/MS analysis demonstrated that chlorination of tyrosine in the peptides that contained lysine was regioselective and occurred in high yield if the substrate was KXXY or YXXK. NMR and MS analyses revealed that the N(epsilon) amino group of lysine was initially chlorinated, which suggests that chloramine formation is the first step in tyrosine chlorination. Molecular modeling of the YXXK motif in apolipoprotein A-I demonstrated that these tyrosine and lysine residues are adjacent on the same face of an amphipathic alpha-helix. Our observations suggest that HOCl selectively targets tyrosine residues that are suitably juxtaposed to primary amino groups in proteins. This mechanism might enable phagocytes to efficiently damage proteins when they destroy microbial proteins during infection or damage host tissue during inflammation.  相似文献   

9.
Myeloperoxidase (MPO) catalyzes the two-electron oxidation of chloride, thereby producing hypochlorous acid (HOCl). Taurine (2-aminoethane-sulfonic acid, Tau) is thought to act as a trap of HOCl forming the long-lived oxidant monochlorotaurine [(N-Cl)-Tau], which participates in pathogen defense. Here, we amend and extend previous studies by following initial and equilibrium rate of formation of (N-Cl)-Tau mediated by MPO at pH 4.0-7.0, varying H(2)O(2) concentration. Initial rate studies show no saturation of the active site under assay conditions (i.e. [H(2)O(2)] > or = 2000 [MPO]). Deceleration of Tau chlorination under equilibrium is quantitatively described by the redox equilibrium established by H(2)O(2)-mediated reduction of compound I to compound II. At equilibrium regime the maximum chlorination rate is obtained at [H(2)O(2)] and pH values around 0.4mM and pH 5. The proposed mechanism includes known acid-base and binding equilibria taking place at the working conditions. Kinetic data ruled out the currently accepted mechanism in which a proton participates in the molecular step (MPO-I+Cl(-)) leading to the formation of the chlorinating agent. Results support the formation of a chlorinating compound I-Cl(-) complex (MPO-I-Cl) and/or of ClO(-), through the former or even independently of it. ClO(-) diffuses away and rapidly protonates to HOCl outside the heme pocket. Smaller substrates will be chlorinated inside the enzyme by MPO-I-Cl and outside by HOCl, whereas bulkier ones can only react with the latter.  相似文献   

10.
This study investigated the functional and structural effects of bovine Cu,Zn-superoxide dismutase (Cu,Zn-SOD) oxidation by the myeloperoxidase (MPO)/hydrogen peroxide (H 2 O 2 )/chloride system and reagent hypochlorous acid (HOCl). Exposure to HOCl led to a fast inactivation accompanied by structural alterations. The residual SOD activity depended on the reactants concentration ratio and on the exposure time. The concomitant high consumption of HOCl indicated the presence of multiple targets on the protein. As assessed by SDS/PAGE, HOCl caused the dissociation of the protein into protomers at 16 kDa stable to both SDS and reducing conditions. Results from isoelectric focusing gels showed that exposure to HOCl induced the formation of modified protein derivatives, with a more acidic net electric charge than the parent molecule, consistent with the presence of additional ions observed in the electrospray ionization mass spectra. The reaction of protein with HOCl resulted in changes in protein conformation as assessed by the UV fluorescence and oxidation of the unique methionine and tyrosine, chlorination of several lysines with formation of chloramines. There was no significant formation of dityrosine and carbonyl groups. Exposure to high levels of HOCl resulted in complete enzyme inactivation, loss of additional lysine, histidine and arginine residues and coincident detection of weakly bound zinc and copper using 4-pyridylazaresorcinol. Collectively, the results suggest that the decrease of the dismutase activity is probably related to both dissociation into protomers and unfolding due to extensive oxidative modifications of amino acids.  相似文献   

11.
Myeloperoxidase (MPO) is a dominating enzyme of circulating polymorphonuclear neutrophils that catalyzes the two-electron oxidation of chloride, thereby producing the strong halogenating agent hypochlorous acid (ClO/HOCl). In absence of MPO the tripeptide Pro-Gly-Gly reacts with HOCl faster than the amino acid taurine (2-aminoethanesulfonic acid, Tau), while the MPO-mediated chlorination shows reverse order. A comparative study of the enzymatic oxidation of both substrates at pH 4.0–6.0, varying H2O2 concentration is presented. Initial and equilibrium rates studies have been carried on, reaction rates in the latter being slower due to the chemical equilibrium between MPO-I and MPO-II–HO2. A maximum of chlorination rate is observed for Pro-Gly-Gly and Tau when [H2O2] ≈ 0.3–0.7 mM and pH ≈ 4.5–5.0. Several mechanistic possibilities are considered, the proposed one implies that chlorination takes place via two pathways. One, for bulkier substrates, involves chlorination by free HOCl outside the heme cavity; ClO is released from the active center, diffuses away the heme cavity, and undergoes protonation to HOCl. The other implies the existence of compound I–Cl complex (MPO-I–Cl), capable of chlorinating smaller substrates in the heme pocket. Electronic structure calculations show the size of Pro-Gly-Gly comparable to the available gap in the substrate channel, this tripeptide being unable to reach the active site, and its chlorination is only possible by free HOCl outside the enzyme.  相似文献   

12.
A synthetic peptide representing sequences of type II collagen, (CII 245-270), has previously been used to induce tolerance and suppress arthritis in DBA/1 mice. To determine important residues, a series of peptides, each containing one or two site-directed substitutions, was generated. Mononuclear cells from DBA/1 mice immunized with CII were cultured in the presence of each peptide and the T cell response determined by measuring IFN-gamma in culture supernatant fluids. Substitutions within the region CII 260-270 led to significant decreases in IFN-gamma responses, identifying this sequence as a T cell epitope. To determine the effects of substitutions within this epitope on arthritis, substituted peptides were administered to neonatal mice as tolerogens. Five site-directed substitutions, four of which included the insertion of a residue found in type I collagen to replace its type II counterpart, abrogated the ability of the peptides to induce tolerance and suppress arthritis. These substitutions were located at residues 260, 261, 263, 264, and 266. Two patterns of T cell reactivity were observed. Peptides containing individual substitutions at positions 261, 264, or 266 were capable of generating a significant T lymphokine response, although those containing substitutions at residues 260 or 263 were ineffective Ag. Systematic analysis of the fine structures of T cell determinants important for autoimmune arthritis can lead to strategies for therapeutic intervention.  相似文献   

13.
This study investigated the functional and structural effects of bovine Cu,Zn-superoxide dismutase (Cu,Zn-SOD) oxidation by the myeloperoxidase (MPO)/hydrogen peroxide (H 2 O 2 )/chloride system and reagent hypochlorous acid (HOCl). Exposure to HOCl led to a fast inactivation accompanied by structural alterations. The residual SOD activity depended on the reactants concentration ratio and on the exposure time. The concomitant high consumption of HOCl indicated the presence of multiple targets on the protein. As assessed by SDS/PAGE, HOCl caused the dissociation of the protein into protomers at 16 kDa stable to both SDS and reducing conditions. Results from isoelectric focusing gels showed that exposure to HOCl induced the formation of modified protein derivatives, with a more acidic net electric charge than the parent molecule, consistent with the presence of additional ions observed in the electrospray ionization mass spectra. The reaction of protein with HOCl resulted in changes in protein conformation as assessed by the UV fluorescence and oxidation of the unique methionine and tyrosine, chlorination of several lysines with formation of chloramines. There was no significant formation of dityrosine and carbonyl groups. Exposure to high levels of HOCl resulted in complete enzyme inactivation, loss of additional lysine, histidine and arginine residues and coincident detection of weakly bound zinc and copper using 4-pyridylazaresorcinol. Collectively, the results suggest that the decrease of the dismutase activity is probably related to both dissociation into protomers and unfolding due to extensive oxidative modifications of amino acids.  相似文献   

14.
Hypochlorous acid/hypochlorite (HOCl/OCl(-)), a potent oxidant generated in vivo by the myeloperoxidase-H(2)O(2)-chloride system of activated phagocytes, alters the physiological properties of high density lipoprotein (HDL) by generating a proatherogenic lipoprotein particle. On endothelial cells lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) and scavenger receptor class B, type I (SR-BI), act in concert by mediating the holoparticle of and selective cholesteryl ester uptake from HOCl-HDL. We therefore investigated the ligand specificity of HOCl-HDL to SR-BI-overexpressing Chinese hamster ovary cells. Binding of HOCl-HDL was saturable, and the degree of HOCl modification was the determining factor for increased binding affinity to SR-BI. Competition experiments further confirmed that HOCl-HDL binds with increased affinity to the same or overlapping domain(s) of SR-BI as does native HDL. Furthermore, SR-BI-mediated selective HDL-cholesteryl ester association as well as time- and concentration-dependent cholesterol efflux from SR-BI overexpressing Chinese hamster ovary cells were, depending on the degree of HOCl modification of HDL, markedly impaired. The most significant findings of this study were that the presence of very low concentrations of HOCl-HDL severely impaired SR-BI-mediated bidirectional cholesterol flux mediated by native HDL. The colocalization of immunoreactive HOCl-modified epitopes with apolipoprotein A-I along with deposits of lipids in serial sections of human atheroma shown here indicates that the myeloperoxidase-H(2)O(2)-halide system contributes to oxidative damage of HDL in vivo.  相似文献   

15.
Oxidation by reactive species can cause changes in protein function and affect cell signalling pathways. Phosphatase and tensin homologue (PTEN) is a negative regulator of the PI3K/AKT pathway and is known to be inhibited by oxidation, but its oxidation by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl) has not previously been investigated. PTEN-GST was treated with HOCl:protein ratios from 15:1 to 300:1. Decreases in PTEN phosphatase activity were observed at treatment ratios of 60:1 and higher, which correlated with the loss of the intact protein band and appearance of high molecular weight aggregates in SDS-PAGE. LC-MSMS was used to map oxidative modifications (oxPTMs) in PTEN-GST tryptic peptides and label-free quantitative proteomics used to determine their relative abundance. Twenty different oxPTMs of PTEN were identified, of which 14 were significantly elevated upon HOCl treatment in a dose-dependent manner. Methionine and cysteine residues were the most heavily oxidised; the percentage modification depended on their location in the sequence, reflecting differences in susceptibility. Other modifications included tyrosine chlorination and dichlorination, and hydroxylations of tyrosine, tryptophan, and proline. Much higher levels of oxidation occurred in the protein aggregates compared to the monomeric protein for certain methionine and tyrosine residues located in the C2 and C-terminal domains, suggesting that their oxidation promoted protein destabilisation and aggregation; many of the residues modified were classified as buried according to their solvent accessibility. This study provides novel information on the susceptibility of PTEN to the inflammatory oxidant HOCl and its effects on the structure and activity of the protein.  相似文献   

16.
Cytochrome c (cyt c)-derived protein radicals, radical adduct aggregates, and protein tyrosine nitration have been implicated in the pro-apoptotic event connecting inflammation to the development of diseases. During inflammation, one of the reactive oxygen species metabolized via neutrophil activation is hypochlorite (HOCl); destruction of the mitochondrial electron transport chain by hypochlorite is considered to be a damaging factor. Previous study has shown that HOCl induces the site-specific oxidation of cyt c at met-80. In this work, we have assessed the hypothesis that exposure of cyt c to physiologically relevant concentrations of HOCl leads to protein-derived radical and consequent protein aggregation, which subsequently affects cyt c's regulation of nitric oxide metabolism. Reaction intermediates, chemical pathways available for protein aggregation, and protein nitration were examined. A weak ESR signal for immobilized nitroxide derived from the protein was detected when a high concentration of cyt c was reacted with hypochlorite in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane. When a low concentration of cyt c was exposed to the physiologically relevant levels of HOCl in the presence of 5,5-dimethyl-pyrroline N-oxide (DMPO), we detected DMPO nitrone adducts derived from both protein and protein aggregate radicals as assessed by Western blot using an antibody raised against the DMPO nitrone adduct. The cyt c-derived protein radicals formed by HOCl were located on lysine and tyrosine residues, with lysine predominating. Cyt c-derived protein aggregates induced by HOCl involved primarily lysine residues and hydrophobic interaction. In addition, HOCl-oxidized cyt c (HOCl-cyt c) exhibited a higher affinity for NO and enhancement of nonenzymatic NO synthesis from nitrite reduction. Furthermore, HOCl-mediated cyt c oxidation also resulted in a significant elevation of cyt c nitration derived from either NO trapping of the cyt c-derived tyrosyl radical or cyt c-catalyzed one-electron oxidation of nitrite.  相似文献   

17.
Collagen induced arthritis (CIA) is a common mouse model for rheumatoid arthritis. Two sets of truncated peptides derived from type II collagen have been prepared and tested for binding to A(q), a MHC-II molecule associated with development of CIA. Binding to A(q) correlated well with predictions from a computer-based model. T-cell hybridomas, obtained in CIA, were also used to study the ability of A(q) bound peptides to trigger a T-cell response. The minimal peptide epitope required for binding, as well as for giving a T-cell response, was determined to be CII260-267. In collagen this epitope is often glycosylated at hydroxylysine 264 and glycosylation has been shown to be an immunodominant feature in CIA. Synthesis and evaluation of CII260-267 carrying a beta-D-galactosyl moiety at position 264 revealed that this glycopeptide stimulated representative members from a panel of carbohydrate-specific T-cell hybridomas obtained in CIA.  相似文献   

18.
Luminol-dependent chemiluminescence of PMA-stimulated human neutrophils decrease more than by 50% in the presence of physiological concentrations of carnosine (20 mM). This inhibition is the result of carnosine ability to scavenge hypochlorite (OCl-), since carnosine exerts a similar effect on chemiluminescence produced by myeloperoxidase-H2O2-Cl- and OCl(-)-H2O2 systems. The previously undocumented property of this dipeptide to scavenge active oxygen species requires further experiments.  相似文献   

19.
Adjuvant arthritis is induced by intradermal injection of Mycobacterium tuberculosis (MT) in oil. The role of immunity to type II collagen (CII) in adjuvant arthritis (AA) has not been well defined. We found that oral administration of chicken CII given 3 micrograms per feeding on days -7, -5, and -2 before disease induction consistently suppressed the development of AA. A decrease in delayed-type hypersensitivity responses to CII was also observed that correlated with suppression of AA. AA was optimally suppressed by 3 and 30 micrograms of collagen type II variably by 300 micrograms, and not by 0.3 microgram or 1 mg. Oral administration of collagen type I also suppressed AA; only minimal effects were seen with collagen type III. Suppression was Ag specific: feeding CII did not suppress experimental autoimmune encephalomyelitis; feeding myelin basic protein suppressed experimental autoimmune encephalomyelitis, but not AA. Suppression of AA could not be consistently obtained by feeding MT. Suppression of AA could be adoptively transferred by T cells from CII fed animals and could be obtained when CII was fed after disease onset. Our results suggest that autoimmunity to CII has a pathogenic role in AA and raise the possibility that cross-reactive epitopes exist between CII and MT. Alternatively, the pathogenesis of AA may be dependent on developing immunity to CII. These results further demonstrate the effectiveness of oral tolerance as a means to suppress experimental autoimmune diseases.  相似文献   

20.
Hypochlorous acid (HOCl) is a major product of activated neutrophils and may be important in antimicrobial activities of cells by oxidation or chlorination of susceptible amino acids. Three major peaks separated using C18 reverse phase-high-performance liquid chromatography RP-HPLC after incubation of leucine enkephalin (LeuEnk) with HOCl. Electrospray mass spectrometry showed masses of m/z 556.2, 590.2, and 624.4 corresponding to unmodified LeuEnk and peptides altered by addition of one or two chlorines (Cl). Formation of stable N-alpha-chloramines was indicated because the chlorinated peptides were readily reduced with the physiological reductants glutathione and ascorbic acid to LeuEnk (m/z 556.2) within 10 min. Sequence-specific ions observed in product ion spectra of single-charged monochlorinated and dichlorinated peptides were consistent with modification of the N-terminal amine. There was no evidence for chlorination of the Tyr aromatic ring in any spectra. Similar RP-HPLC profiles were obtained after oxidation of des-Tyr1-LeuEnk (GGFL) with the masses of the major products being m/z 393.3, 427.2, and 461.1. These were identified as unmodified GGFL, N-alpha-Cl-GGFL, and N-alpha-Cl2-GGFL based on comparison of tandem mass spectra. Oxidation of Met and formation of disulfide dimers was observed after incubation of either N-alpha-Cl-LeuEnk or N-alpha-Cl2-LeuEnk with a protein, indicating that both peptide N-alpha-chloramines were able to readily modify sulfur-containing amino acids within proteins. These data indicate initial formation of stable N-alpha-chorinated peptides after incubation with HOCl and suggest that N-alpha-chlorinated peptides may exist for some hours in the absence of physiological reducing agents or sulfur-containing amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号