首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eukaryotic replication begins at origins and on the lagging strand with RNA-primed DNA synthesis of a few nucleotides by polymerase alpha, which lacks proofreading activity. A polymerase switch then allows chain elongation by proofreading-proficient pol delta and pol epsilon. Pol delta and pol epsilon are essential, but their roles in replication are not yet completely defined . Here, we investigate their roles by using yeast pol alpha with a Leu868Met substitution . L868M pol alpha copies DNA in vitro with normal activity and processivity but with reduced fidelity. In vivo, the pol1-L868M allele confers a mutator phenotype. This mutator phenotype is strongly increased upon inactivation of the 3' exonuclease of pol delta but not that of pol epsilon. Several nonexclusive explanations are considered, including the hypothesis that the 3' exonuclease of pol delta proofreads errors generated by pol alpha during initiation of Okazaki fragments. Given that eukaryotes encode specialized, proofreading-deficient polymerases with even lower fidelity than pol alpha, such intermolecular proofreading could be relevant to several DNA transactions that control genome stability.  相似文献   

2.
DNA polymerase alpha and models for proofreading.   总被引:4,自引:2,他引:2       下载免费PDF全文
Using a modified system to measure fidelity at an amber site in phi X174, we have employed DNA polymerase alpha to test different mechanisms for proofreading. DNA polymerase alpha does not exhibit the characteristics of "kinetic proofreading" seen with procaryotic polymerases. Polymerase alpha shows no evidence for a "next nucleotide" effect, and added deoxynucleoside monophosphates do not alter fidelity. Pyrophosphate, which increases error rates with a procaryotic polymerase, appears to weakly improve polymerase alpha fidelity. DNA polymerase alpha does exhibit a dramatic increase in error rate in the presence of a deoxycytidine thiotriphosphate (dCTP alpha S), but this enhanced mutagenesis also occurs under conditions where kinetic proofreading should be otherwise defeated. This particular effect with dCTP alpha S appears specific for DNA polymerase alpha and is not seen with the other polymerases tested.  相似文献   

3.
S Mimura  H Takisawa 《The EMBO journal》1998,17(19):5699-5707
At the onset of S phase, chromosomal replication is initiated by the loading of DNA polymerase alpha onto replication origins. However, the molecular mechanisms for controlling the initiation are poorly understood. Using Xenopus egg extract, we report here the identification of a Xenopus homolog of Cdc45, a yeast protein essential for the initiation of replication, which is shown to be an essential molecule for the initiation of replication via the loading of DNA polymerase alpha onto chromatin. XCdc45, by physically interacting with the polymerase in the extract, became associated with chromatin only after nuclear formation. During S phase, XCdc45 co-localized with the polymerase in the nuclei, and the loading of the polymerase, which depended on endogenous XCdc45, was facilitated by exogenously added recombinant XCdc45. These findings, together with the apparent requirement of S-phase-cdk activity for the loading of XCdc45, suggest that XCdc45, under the control of S-phase cdk, plays a pivotal role in the loading of DNA polymerase alpha onto chromatin.  相似文献   

4.
The evolutionary conservation of DNA polymerase alpha.   总被引:7,自引:3,他引:4       下载免费PDF全文
M A Miller  D Korn    T S Wang 《Nucleic acids research》1988,16(16):7961-7973
The evolutionary conservation of DNA polymerase alpha was assessed by immunological and molecular genetic approaches. Four anti-human KB cell DNA polymerase alpha monoclonal antibodies were tested for their ability to recognize a phylogenetically broad array of eukaryotic DNA polymerases. While the single non-neutralizing antibody used in this study recognizes higher mammalian (human, simian, canine, and bovine) polymerases only, three neutralizing antibodies exhibit greater, but variable, extents of cross-reactivity among vertebrate species. The most highly cross-reactive antibody recognizes a unique epitope on a 165-180 kDa catalytic polypeptide in cell lysates from several eukaryotic sources, as distant from man as the amphibians. Genomic Southern hybridization studies with the cDNA of the human DNA polymerase alpha catalytic polypeptide identify the existence of many consensus DNA sequences within the DNA polymerase genes of vertebrate, invertebrate, plant and unicellular organisms. These findings illustrate the differential evolutionary conservation of four unique epitopes on DNA polymerase alpha among vertebrates and the conservation of specific genetic sequences, presumably reflective of critical functional domains, in the DNA polymerase genes from a broad diversity of living forms.  相似文献   

5.
Dehydroaltenusin was found to be an inhibitor of mammalian DNA polymerase alpha (pol alpha) in vitro. Surprisingly, among the polymerases and DNA metabolic enzymes tested, dehydroaltenusin inhibited only mammalian pol alpha. Dehydroaltenusin did not influence the activities of the other replicative DNA polymerases, such as delta and epsilon; it also showed no effect even on the pol alpha activity from another vertebrate (fish) or plant species. The inhibitory effect of dehydroaltenusin on mammalian pol alpha was dose-dependent, and 50% inhibition was observed at a concentration of 0.5 microm. Dehydroaltenusin-induced inhibition of mammalian pol alpha activity was competitive with the template-primer and non-competitive with the dNTP substrate. BIAcore analysis demonstrated that dehydroaltenusin bound to the core domain of the largest subunit, p180, of mouse pol alpha, which has catalytic activity, but did not bind to the smallest subunit or the DNA primase p46 of mouse pol alpha. These results suggest that the dehydroaltenusin molecule competes with the template-primer molecule on its binding site of the catalytic domain of mammalian pol alpha, binds to the site, and simultaneously disturbs dNTP substrate incorporation into the template-primer.  相似文献   

6.
Since phospholipids have been suggested to play some role in the molecular organisation of the nuclear matrix, the effect of their removal by means of phospholipase C has been investigated in regenerating rat liver nuclear matrix. The matrix-bound DNA polymerase alpha shows an almost complete loss of activity following the digestion with phospholipase C. Since the polymerase activity is restored by adding exogenous DNA, we suggest that the effect is due to the removal of matrix residual DNA, which is in some way linked to the nuclear matrix by means of hydrophobic interactions.  相似文献   

7.
Two forms of DNA polymerase alpha, alpha 1 and alpha 2, have been partially purified from mouse FM3A cells by discriminating one form from the other on the basis of the association of primase activity. The primase activity in the most purified alpha 1 fraction co-sedimented with the DNA polymerase activity in a glycerol gradient, and almost no primase activity was detected in the most purified alpha 2 fraction. The primase activity associated with DNA polymerase alpha was assayed indirectly by measuring ATP-dependent DNA synthesis with poly (dT) as template. Characterization of the assay system was performed with the purified alpha 1. The system was absolutely dependent on the presence of ATP and a divalent cation. Mn2+ was much more effective than Mg2+, and 5-fold higher activity was observed with Mn2+ than with Mg2+ at their optimal concentrations. The primase activity assayed by the above system showed sensitivity to (NH4)2SO4 very similar to that of free primase reported by Tseng and Ahlem (J. Biol. Chem. 258, 9845-9849, 1983). The activity was inhibited by more than 50% by 20 mM (NH4)2SO4. alpha 1 and alpha 2 were very similar as DNA polymerases in their sensitivity to several inhibitors and their preference for template-primers, except that alpha 1 had a slightly greater preference for poly (dT) X (rA)10 than alpha 2 did. The major difference between the two forms was observed in their S values, 8.2 and 6.4 S for alpha 1 and alpha 2, respectively.  相似文献   

8.
Inhibition of DNA polymerase alpha by aphidicolin derivatives.   总被引:3,自引:3,他引:0       下载免费PDF全文
L Arabshahi  N Brown  N Khan    G Wright 《Nucleic acids research》1988,16(11):5107-5113
17-Acetylaphidicolin was 10-fold weaker and two derivatives lacking hydroxyl groups at the 16 and 17 positions were 100-fold weaker than aphidicolin as inhibitors of DNA polymerase alpha from HeLa and Chinese hamster ovary cells. 17,18-Diacetyl, 3,17,18-triacetyl and 3-epi derivatives of aphidicolin were inactive. Active compounds were, like aphidicolin, competitive with dCTP and did not inhibit aphidicolin-resistant DNA polymerases.  相似文献   

9.
In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair.  相似文献   

10.
Template-primers constructed of phiX174 single-stranded viral DNA hybridized to a restriction fragment of phiX174 RF DNA can be used for extensive polymerization by DNA polymerase alpha. Polymerization is dependent upon a restriction fragment containing a 3'OH. The products of the reaction have been identified by agarose gel electrophoresis. Polymerization of 150--400 nucleotides can be obtained in 1h depending upon the restriction fragment used as primer. Synthesis may be limited by barriers in the primary or secondary structure of the template. A factor which stimulates the rate of alpha polymerase activity on these templates was partially purified. This factor does not stimulate alpha polymerase on activated DNA. The stimulating factor sediments at 5.5 S in glycerol gradients containing 0.4M potassium phosphate and has an apparent molecular weight of 70 000 on Sephadex G-100.  相似文献   

11.
DNA polymerase alpha from Drosophila melanogaster embryos is a multisubunit enzyme complex which can exhibit DNA polymerase, 3'----5' exonuclease, and DNA primase activities. Pyridoxal 5'-phosphate (PLP) inhibition of DNA polymerase activity in this complex is time dependent and exhibits saturation kinetics. Inhibition can be reversed by incubation with an excess of a primary amine unless the PLP-enzyme conjugate is first reduced with NaBH4. These results indicate that PLP inhibition occurs via imine formation at a specific site(s) on the enzyme. Results from substrate protection experiments are most consistent with inhibition of DNA polymerase activity by PLP binding to either one of two sites. One site (PLP site 1) can be protected from PLP inhibition by any nucleoside triphosphate in the absence or presence of template-primer, suggesting that PLP site 1 defines a nucleotide-binding site which is important for DNA polymerase activity but which is distinct from the DNA polymerase active site. PLP also inhibits DNA primase activity of the DNA polymerase alpha complex, and primase activity can be protected from PLP inhibition by nucleotide alone, arguing that PLP site 1 lies within the DNA primase active site. The second inhibitory PLP-binding site (PLP site 2) is only protected from PLP inhibition when the enzyme is bound to both template-primer and correct dNTP in a stable ternary complex. Since binding of PLP at site 2 is mutually exclusive with template-directed dNTP binding at the DNA polymerase active site, PLP site 2 appears to define the dNTP binding domain of the active site. Results from initial velocity analysis of PLP inhibition argue that there is a rate-limiting step in the polymerization cycle during product release and/or translocation.  相似文献   

12.
The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells. This stimulation is independent of Fob1p, a protein required for the programmed replication fork block (RFB) in the rDNA. We observed that the fob1 mutation alone significantly increased meiotic, but not mitotic, rDNA recombination, suggesting a meiosis-specific role for this protein. We found that meiotic cells with low polymerase alpha had decreased Sir2p binding and increased Spo11p-catalyzed double-strand DNA breaks in the rDNA. Furthermore, meiotic crossover interference in the rDNA is absent. These results suggest that the hyper-Rec phenotypes resulting from low levels of DNA polymerase alpha in mitosis and meiosis reflect two fundamentally different mechanisms: the increased mitotic recombination is likely due to increased double-strand DNA breaks (DSBs) resulting from Fob1p-independent stalled replication forks, whereas the hyper-Rec meiotic phenotype results from increased levels of Spo11-catalyzed DSBs in the rDNA.  相似文献   

13.
Potential DNA replication accessory factors from the yeast Saccharomyces cerevisiae have previously been identified by their ability to bind to DNA polymerase alpha protein affinity matrices (J. Miles and T. Formosa, Proc. Natl. Acad. Sci. USA 89:1276-1280, 1992). We have now used genetic methods to characterize the gene encoding one of these DNA polymerase alpha-binding proteins (POB1) to determine whether it plays a role in DNA replication in vivo. We find that yeast cells lacking POB1 are viable but display a constellation of phenotypes indicating defective DNA metabolism. Populations of cells lacking POB1 accumulate abnormally high numbers of enlarged large-budded cells with a single nucleus at the neck of the bud. The average DNA content in a population of cells lacking POB1 is shifted toward the G2 value. These two phenotypes indicate that while the bulk of DNA replication is completed without POB1, mitosis is delayed. Deleting POB1 also causes elevated levels of both chromosome loss and genetic recombination, enhances the temperature sensitivity of cells with mutant DNA polymerase alpha genes, causes increased sensitivity to UV radiation in cells lacking a functional RAD9 checkpoint gene, and causes an increased probability of death in cells carrying a mutation in the MEC1 checkpoint gene. The sequence of the POB1 gene indicates that it is identical to the CTF4 (CHL15) gene identified previously in screens for mutations that diminish the fidelity of chromosome transmission. These phenotypes are consistent with defective DNA metabolism in cells lacking POB1 and strongly suggest that this DNA polymerase alpha-binding protein plays a role in accurately duplicating the genome in vivo.  相似文献   

14.
15.
A crucial event in DNA replication is the polymerase switch from the synthesis of a short RNA/DNA primer by DNA polymerase alpha/primase to the pro?cessive elongation by DNA polymerase delta. In order to shed light on the role of replication factor C (RF-C) in this process, the effects of RF-C on DNA polymerase alpha were investigated. We show that RF-C stalls DNA polymerase alpha after synthesis of approximately 30 nucleotides, while not inhibiting the polymerase activity per se. This suggested that RF-C and the length of the primer may be two important factors contributing to the polymerase switch. Furthermore the DNA binding properties of RF-C were tested. Band shift experiments indicated that RF-C has a preference for 5' recessed ends and double-stranded DNA over 3' ends. Finally PCNA can be loaded onto a DNA template carrying a RNA primer, suggesting that a DNA moiety is not necessarily required for the loading of the clamp. Thus we propose a model where RF-C, upon binding to the RNA/DNA primer, influences primer synthesis and sets the conditions for a polymerase switch after recruiting PCNA to DNA.  相似文献   

16.
The mitotic spindle assembly checkpoint arrests cells at metaphase by suppressing Cdc20, a protein required to trigger ubiquitination and consequent degradation of cyclin B. New evidence from Tang et al. appearing in the November 5th issue of Molecular Cell finds that one of the checkpoint proteins, Bub1, specifically phosphorylates Cdc20 to suppress APC/C activation.  相似文献   

17.
An important not yet fully understood event in DNA replication is the DNA polymerase (pol) switch from pol alpha to pol delta. Indirect evidence suggested that the clamp loader replication factor C (RF-C) plays an important role, since a replication competent protein complex containing pol alpha, pol delta and RF-C could perform pol switching in the presence of proliferating cell nuclear antigen (PCNA). By using purified pol alpha/primase, pol delta, RF-C, PCNA and RP-A we show that: (i) RF-C can inhibit pol alpha in the presence of ATP prior to PCNA loading, (ii) RF-C decreases the affinity of pol alpha for the 3'OH primer ends, (iii) the inhibition of pol alpha by RF-C is released upon PCNA loading, (iv) ATP hydrolysis is required for PCNA loading and subsequent release of inhibition of pol alpha, (v) under these conditions a switching from pol alpha/primase to pol delta is evident. Thus, RF-C appears to be critical for the pol alpha to pol delta switching. Based on these results, a model is proposed in which RF-C induces the pol switching by sequestering the 3'-OH end from pol alpha and subsequently recruiting PCNA to DNA.  相似文献   

18.
We isolated a temperature-sensitive mutant from mouse FM3A cells, designated as tsFT20, the DNA polymerase alpha activity of which is heat-labile. A hybrid clone (M6-39 cells) between human cells and tsFT20 cells contained one or two human chromosomes. M6-39 cells (primary hybrid) were exposed to gamma-ray and re-fused with tsFT20, after which we isolated two temperature-resistant secondary hybrids, both of which retained an identical minute portion of the human chromosome, 400-500 kilobase pairs (kbp). Immunological studies demonstrated that this secondary hybrid expressed human DNA polymerase alpha. Thus, the human DNA polymerase alpha gene was located within a DNA region of 400-500 kbp.  相似文献   

19.
Using an in vitro chromatin assembly assay in Xenopus egg extract, we show that cyclin E binds specifically and saturably to chromatin in three phases. In the first phase, the origin recognition complex and Cdc6 prereplication proteins, but not the minichromosome maintenance complex, are necessary and biochemically sufficient for ATP-dependent binding of cyclin E--Cdk2 to DNA. We find that cyclin E binds the NH(2)-terminal region of Cdc6 containing Cy--Arg-X-Leu (RXL) motifs. Cyclin E proteins with mutated substrate selection (Met-Arg-Ala-Ile-Leu; MRAIL) motifs fail to bind Cdc6, fail to compete with endogenous cyclin E--Cdk2 for chromatin binding, and fail to rescue replication in cyclin E--depleted extracts. Cdc6 proteins with mutations in the three consensus RXL motifs are quantitatively deficient for cyclin E binding and for rescuing replication in Cdc6-depleted extracts. Thus, the cyclin E--Cdc6 interaction that localizes the Cdk2 complex to chromatin is important for DNA replication. During the second phase, cyclin E--Cdk2 accumulates on chromatin, dependent on polymerase activity. In the third phase, cyclin E is phosphorylated, and the cyclin E--Cdk2 complex is displaced from chromatin in mitosis. In vitro, mitogen-activated protein kinase and especially cyclin B--Cdc2, but not the polo-like kinase 1, remove cyclin E--Cdk2 from chromatin. Rebinding of hyperphosphorylated cyclin E--Cdk2 to interphase chromatin requires dephosphorylation, and the Cdk kinase-directed Cdc14 phosphatase is sufficient for this dephosphorylation in vitro. These three phases of cyclin E association with chromatin may facilitate the diverse activities of cyclin E--Cdk2 in initiating replication, blocking rereplication, and allowing resetting of origins after mitosis.  相似文献   

20.
We report that a plasmid replicating in Xenopus egg extracts becomes negatively supercoiled during replication initiation. Supercoiling requires the initiation factor Cdc45, as well as the single-stranded DNA-binding protein RPA, and therefore likely represents origin unwinding. When unwinding is prevented, Cdc45 binds to chromatin whereas DNA polymerase alpha does not, indicating that Cdc45, RPA, and DNA polymerase alpha bind chromatin sequentially at the G1/S transition. Whereas the extent of origin unwinding is normally limited, it increases dramatically when DNA polymerase alpha is inhibited, indicating that the helicase that unwinds DNA during initiation can become uncoupled from the replication fork. We discuss the implications of these results for the location of replication start sites relative to the prereplication complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号