首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-two Holstein cows were randomly assigned to three superovulatory treatment groups of 14 cows each. Cows in Group I received follicle stimulating hormone (FSH; 50 mg i.m.); those in Group II received FSH (50. mg i.m.) along with GnRH (250 ug in 2 % carboxymethylcellulose s.c.) on the day of estrus; and cows in Group III were infused FSH (49 mg) via osmotic pump implants. FSH was administered over a 5-d period for cows in Groups I and II (twice daily in declining doses). Cows in Group III received FSH over a 7-d period (constantly at a rate of 7 mg/day). All cows received 25 mg PGF(2)alpha (prostaglandin F(2)alpha) 48 hours after initiation of the FSH treatment. Blood samples were collected from seven cows from each group at 2 hour intervals on the fifth day of superovulation for serum luteinizing hormone (LH) concentration analysis by radioimmunoassay, and blood samples were collected from all cows on the day of embryo recovery for plasma progesterone determination. The LH profile was not altered (P>0.05) by either GnRH administration or by the constant infusion of FSH as compared to FSH treatment alone. Plasma progesterone concentrations were highly correlated with the number of corpora lutea (CL) palpated (r=0.92; P<0.01) and with the number of ova and/or embryos recovered (r=0.88; P<0.01). The accuracy of predicting the number of recoverable ova and/or embryos by the concentration of plasma progesterone was 86%.  相似文献   

2.
The variability of the superovulation response in cattle is an important problem to the commercial embryo transfer industry. Plasma LH and FSH concentrations around the time of estrus and ovulation were studied in relation to embryo production, to try and elucidate this problem. Sixteen cows were superovulated with 38 mg FSH-P and estrus synchronized with prostaglandin F(2) alpha. On the third and fourth day of superovulation increases in plasma LH but not FSH were detected. The LH and FSH profiles appeared to be normal in the size of the surge but in many cases they were were abnormal in timing. Transferable embryo production appeared to be lower in cows in which the LH and FSH surges were not coincident, and in cows where the surges were early or late with reference to estrus. FSH appeared to be primarily responsible for the number of embryos produced and LH for their quality, i.e. the number transferable.  相似文献   

3.
Gonadotropin releasing hormone (GnRH) was given to 109 cows and heifers during the course of 224 superovulations. Follicle stimulating hormone (FSH) was administered twice daily (5 or 6 mg) for 3.5 to 4 days beginning on any of Days 9 to 14 of the estrous cycle; prostaglandin (45 mg PGF(2)alpha or 750 ug cloprostenol) was given in a split dose on the fourth day. Donor cows and heifers were placed into four groups according to previous superovulation treatments, which consisted of one to three treatments or of no previous treatment. Every other cow or heifer within each of the four subgroups was treated with GnRH (200 mug i.m.) at standing estrus. Only donors that exhibited estrus within 32 to 72 h after the first prostaglandin treatment were used in the study. Animals were inseminated artificially 12 and 24 h after standing estrus was first observed. No differences were noted in the number of ovulations, total ova or transferable embryos recovered from the GnRH or control groups; however, two interactions were detected. Cows given GnRH had fewer palpable corpora lutea than control cows (P < 0.05), but this difference was not seen in heifers. The second interaction was that GnRH seemed to depress ovulation rate in donors not previously superovulated, but this effect was not observed with subsequent superovulations. Cows yielded more total ova than heifers (P < 0.01). There was no difference in return to estrus between GnRH and control groups after a second prostaglandin treatment at the time of embryo recovery. Most donors within each group resumed cycling between 5 and 12 d after embryo recovery.  相似文献   

4.
This study investigated the effects of a purified follicle stimulating hormone (FSH) preparation supplemented with three different amounts of bovine luteinizing hormone (bLH) and a commercially available FSH with a high LH contamination on superovulatory response, plasma LH and milk progesterone levels in dairy cows. A total of 112 lactating Holstein-Friesian crossbred dairy cows were used for these experiments; the cows were randomly assigned to treatment groups consisting of purified porcine FSH (pFSH) supplemented with bLH. Group 1 was given 0.052 IU LH 40 mg armour units (AU) FSH (n = 6); Group 2 was given 0.069 IU LH (n = 32); Group 3 received 0.423 IU LH (n = 34); while Group 4 cows (n = 36) were superovulated with a commercially available FSH-P((R)). This compound appeared to contain 8.5 IU LH 40 mg AU FSH according to bioassay measurement. All animals received a total of 40 mg AU FSH at a constant dose twice daily over a 4-d period. Levels of milk progesterone and plasma LH were determined during the course of superovulatory treatment. The Group 1 treatment did not reveal multiple follicular growth, and no embryos were obtained. Superovulation of Group 3 cows resulted in significantly (P<0.05) more corpora lutea (CL; 12.6+/-1.1) and fertilized ova (5.1+/-1.3) compared with Groups 2 and 4 (10.1+/-0.9 and 2.6+/-0.6, 9.0+/-0.9 and 2.7+/-0.5, respectively). Due to a high percentage of degenerated embryos (33%) Group 3 yielded only one more transferable embryo than Groups 2 and 4. Among groups, LH levels differed in the period prior to induction of luteolysis and were similar thereafter. The progesterone pattern following FSH LH administration reflected the amount of LH supplementation. Milk progesterone levels on the day prior to embryo collection were correlated to the number of CLs and recovered embryos. It is concluded that under the conditions of our experiment superovulation with 0.423 IU LH 40 mg AU FSH may yield a significantly improved superovulatory response in dairy cows. It is further suggested that LH supplementation exerts its effects mainly on follicular and oocyte maturation during the period prior to luteolysis.  相似文献   

5.
Beginning on Day 10 or 11 of the estrous cycle, mature Holstein heifers were given a superovulatory regimen of twice-daily injections of porcine FSH, together with injections of PG with the fifth and sixth FSH injections. Every 12 h from 24 to 60 h after PG administration, the animals received im injections of different doses of the LH releasing hormone antagonist [N-Ac-D-Nal(2)(1), D-pCl-Phe(2), D-Trp(3), D-Arg(6), D-Ala(10)]-LHRH or vehicle. Follicular development was monitored by transrectal ultrasonography every 12 h from 24 to 120 h after PG administration. All animals were given hCG at 72 h after PG injection, and were artificially inseminated. At Day 7 of gestation, the corpora lutea were counted by ultrasonography, and embryos were collected by nonsurgical flushing of the uterus. Treatment with the antagonist resulted in a dose-dependent decrease in the amplitude of the LH surge and in delays in the time of occurrence of the LH surge, ovulation and the shift from estradiol to progesterone production. These results indicate that LHRH antagonists can be used to delay the LH surge and ovulation in superovulated heifers. This finding may be beneficial to studies in the superovulation of cattle.  相似文献   

6.
We studied native Mertolengo cattle to evaluate superovulatory (SOV) treatments, subsequent fertility of donors and pregnancy rate of recovered embryos. In Experiment 1 we compared superovulatory response (SR), embryo quality and plasma progesterone (P4) levels between donors treated with eCG (10 cows and 5 heifers) vs. FSH (pure, FSH-1, n=10 cows and crude, FSH-2, n=10 cows), during progestagenic impregnation. We also compared fertilization rates and embryo quality of bred and inseminated eCG and FSH-1 donors. Significantly more viable embryos were yielded by FSH than by eCG treated donors. Less FSH-1 than FSH-2-treated donors showed SR, but the response was identical in responder donors of both groups. Fertilization rates were significantly higher in bred than in inseminated donors. Plasma P4 levels were only significantly different (higher) between responder and non-responder donors on the day of embryo recovery. Experiment 2 compared FSH treatments (FSH-2, crude, n=11 cows and FSH-3, pure, n=10 cows) started at the midluteal phase. The mean number of viable embryos was significantly higher in FSH-3 than in FSH-2 treated donors. Both FSH treatments exerted a similar luteotrophic effect upon injection. The FSH-2 donors treated during the midluteal phase yielded more ova and showed significantly higher plasma P4 levels at all sampling days than those treated during progestagenic impregnation. The pregnancy rates of recipient cows were 67% and 46% for fresh and frozen-thawed embryos respectively. In Experiment 3, the fertility of donors (n=20) after SOV treatments was compared with that of untreated cows (n=40). Time to conception of donors, after mating with a bull 14 days after embryo recovery, was identical to that of control cows. There was some delay to conception in eCG-treated cows, but the difference was not significant. These preliminary results suggest that response to SOV treatments in Mertolengo cattle might be affected by the type of gonadotrophin and by the treatment protocol. The fertility of a traditional breeding season after SOV treatments was not impaired. Cryopreserved embryo banking can be used to preserve the breed.  相似文献   

7.
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V, 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean +/- SEM) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8+/-1.8, 6.1+/-1.3, 51.5), P48 (12.6+/-1.9, 7.1+/-1.0, 52.3), P60 (10.5+/-1.6, 5.7+/-1.3, 40.0) and D60 (10.3+/-1.7, 5.0+/-1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol.  相似文献   

8.
Callesen H  Bak A  Greve T 《Theriogenology》1992,38(5):959-968
Two Pregnant Mare Serum Gonadotrophin (PMSG) antisera were tested in 174 dairy cows that were superovulated with PMSG and were then given prostaglandin at 60 hours after PMSG. At 48 hours after injection of prostaglandin, the cows were given either PMSG antiserum (monoclonal (n=56) or polyclonal (n=57)), or saline as control (n=61). Ova (n=1,206) were recovered either nonsurgically or after slaughter. Of these, 757 were evaluated morphologically to be transferable embryos. A proportion of these embryos (n=295 from 52 flushed donors) were transferred to synchronized recipients and the pregnancy results were recorded. The reproductive function of 37 flushed donors was followed for 6 months after superovulation. No significant effect of the PMSG antisera could be demonstrated in any of the parameters studied (i.e., ovulation rate, number of follicles at collection, total yield of ova, fertilization rate, number of transferable embryos, pregnancy results after transfer of embryos, or period required by the donor cows for restitution of reproductive function after superovulation and recovery). It is concluded that use of PMSG antiserum did not improve the embryo yield in terms of the number and quality of transferable embryos or enhance normalization of reproductive function of the donor in the 6-month period after superovulation. Therefore, in an embryo transfer operation, the routine use of PMSG antiserum in a PMSG superovulation regimen in cattle is not recommended.  相似文献   

9.
Eighteen lactating Holstein cows were randomly divided into three groups of equal size. Six cows were not superovulated; the remaining cows were superovulated using either FSH-P or PMSG beginning on Day 12 of the estrous cycle (day of ovulation = Day 0). Animals treated with FSH-P were injected intramuscularly (i.m.) with 4 mg FSH-P every 12 h for 5 d. PMSG was administered i.m. as a single injection of 2350 IU. Cloprostenol (PG, 500 ug) was injected i.m. 56 and 72 h after commencement of treatment and at the same time in the cycle of controls. All cows were inseminated 56, 68 and 80 h after the first PG injection. Blood samples (5 ml) were collected daily and every 15 min for a period of 9 h on Days -1, 0, 2, 8 and 10, with continuous blood sampling at 15-min intervals during Days 3 to 6. Ovulation rate was 27.7 +/- 8.22 in animals treated with PMSG, and 8.0 +/- 3.2 embryos per donor were recovered. In the FSH group, ovulation rate was 8.3 +/- 1.48 and 3.0 +/- 1.1 embryos per donor were recovered. Progesterone concentrations were similar in all three groups until the onset of the LH surge, when progesterone concentrations were greater (P<0.05) in animals of the PMSG group. After the preovulatory LH surge, concentrations of progesterone started increasing earlier (44 h) in cows treated with PMSG, followed by FSH-treated cows (76 h) and controls (99 h). The LH surge occurred earlier (P<0.05) in PMSG-treated cows (37 h after first PG treatment), than in animals treated with FSH-P (52 h) or controls (82 h). In animals treated with FSH-P, the magnitude of the preovulatory LH surge (24.2 +/- 1.02 ng/ml) was higher (P<0.05) than in the other two groups (PMSG = 17.1 +/- 2.04 ng/ml; control, 16.7 +/- 1.24 ng/ml). Superovulation with FSH-P or PMSG did not affect either mean basal LH concentration, frequency or amplitude of LH pulses during Days -1, 0, 2, 3, presurge periods, or Days 8 and 10 post-treatment. At ovariectomy, 8 d post-estrus, more follicles > 10 mm diam. were observed in the ovaries after treatment with PMSG (8.5 +/- 5.66) than after treatment with FSH-P (0.7 +/- 0.42) (P<0.05). Maximum concentrations of PMSG were measured 24 h after administration. Following this peak, PMSG levels declined with two slopes, with half-lives of 36 h and 370 h.  相似文献   

10.
Effect of estradiol supplementation on superovulation in Swamp buffalo   总被引:1,自引:0,他引:1  
The effect of estradiol-17beta (E(2)) supplementation on superovulation with (PMSG) or (FSH) was investigated in Swamp buffalo. Sixty-eight buffalo were treated in seven groups. Group 1 served as control and was superovulated by standard PMSG or FSH treatment used in routine bovine embryo transfer protocols. Group 2 was superovulated by standard PMSG regimen plus two injections of E(2) at a 48 h interval beginning one day before the onset of gonadotropin treatment (short-term supplementation) for a total dosage of 2.5 mg E(2); Groups 3 and 4 received the same regimen as Group 2, but in doses of 5.0 and 7.5 mg E(2), respectively. Group 5 received the standard FSH regimen (40% LH). Group 6 received short-term E(2) (7.5 mg) supplementation of FSH-p. Group 7 was superovulated by standard FSH regimen (40% LH) plus three injections of E(2) at 48-72 h intervals beginning five days before the onset of gonadotropin treatment (long-term supplementation) for a total dosage of 7.5 mg E(2). The number of corpora lutea (CL) and follicles >/= 8 mm in diameter were recorded by palpation per rectum and after slaughter. The mean numbers of CL and follicles were 0.99, 5.8, 8.0, 10.6, 4.0, 3.9, 8.1 and 0.25, 6.8, 6.2, 6.2, 1.6, 0.0, 4.1 for Groups 1, 2, 3, 4, 5, 6, 7, respectively. In Group 7, the rates of nonsurgical and postmortem embryo recovery were 46 and 90.4%, respectively and 54.4% of the collected ova were fertilized. These results indicate the possibility of producing viable embryos in buffalo by using E(2) supplementation for the gonadotropin treatment.  相似文献   

11.
Ovarian follicular dynamics and steroid secretion patterns were monitored in postpartum beef cows that were synchronized for estrus with melengestrol acetate (MGA) or prostaglandin F(2alpha) (PGF) prior to superovulation. Twenty-four muhiparous Angus cows were stratified by number of days postpartum to an MGA or PGF treatment prior to superovulation. Cows in the MGA group were fed 0.5 mg MGA/d for 14 d in a grain carrier. Superstitnulatory treatments began 14 d after withdrawal of MGA from feed or 11 d after administering a single injection of 500 microg cloprostenol (PGF). Supersthnulatory treatments (FSH) were administered twice daily in decreasing doses (7.5, 5, 5, 2.5 mg) over 4 d. Sixty and 72 h after initiating the superstimulatory treatments, all cows were treated with 750 microg and 500 microg PGF, respectively Cows were inseminated at 0, 12, and 24 h from the onset of standing estrus with semen from 2 proven sires. Cows within treatment were inseminated with 1, 2 and 1 (single) or 2, 4 and 2 units (double) of semen at the designated insemination times. Blood sampling and transrectal ultrasonography of ovaries were performed daily beginning 2 d prior to the initiation of FSH treatment and were continued through embryo recovery. Ovaries were examined daily to determine the number and size of follicles. Plasma samples were analyzed for progesterone and estradiol. Follicles were counted and categorized based on a 5 to 9 mm range or >/= 10 mm. At the end of superovulatory treatment there were more (P /= 10 mm among cows that were estrus synchronized with MGA (75 +/- 1.2) than with PGF (3.9 +/- 1.2) These differences were reflected in higher (P 相似文献   

12.
Thirty-two Border Leicester x Scottish Blackface ewes that lambed in March were individually penned with their lambs from April 16th and given daily an oral dose of 3 mg melatonin at 1500 h (Group M). A further 32 acted as controls (Group C). Within each group half were used as embryo donors (Group D) following superovulation and half received embryos (Group R) following an induced estrus. Prior to weaning on 21 May ewes received ad libitum a complete diet providing 9 megajoules (MJ) of metabolizable energy and 125 g/kg crude protein. Thereafter each received 1.6 kg of the diet daily. In early June each ewe received an intravaginal device (300 mg progesterone) inserted for 12 d. Donors were superovulated with 4 i.m. injections of porcine FSH 12 h apart, commencing 24 h before progesterone withdrawal. Ovulation in recipients was induced with 800 IU PMSG injected i.m. at progesterone removal. Donor ewes were inseminated 52 h after progesterone withdrawal. Embryos were collected 4 d later and transferred to recipients. Melatonin suppressed plasma prolactin (P < 0.001) and advanced estrus (P < 0.05) and timing of the LH peak (P < 0.05). These events also occurred earlier in donors than in recipients (P < 0.01). Mean (+/- SEM) ovulation rates for melatonin-treated and control donors were 5.5 +/- 0.71 and 4.7 +/- 0.66, respectively (NS). Corresponding recipient values were 3.3 +/- 0.40 and 3.4 +/- 0.39 (NS). Mean (+/- SEM) embryo yields were 2.9 +/- 0.64 and 2.6 +/- 0.73 for melatonin-treated (n = 15) and control (n = 16) donors, respectively, and for the 12 ewes per treatment that supplied embryos, corresponding numbers classified as viable were 2.7 +/- 0.47 and 2.3 +/- 0.61 (NS). Following transfer, 57% of embryos developed to lambs when both donor and recipient received melatonin, 86% when only the donor received melatonin, 91% when only the recipient received melatonin, and 67% when neither received melatonin (NS). Thus, embryo survival following transfer was not improved by treating recipients with melatonin. Gestation length and lamb birthweights were unaffected by melatonin. Unlike nonpregnant control ewes, melatonin-treated recipients that failed to remain pregnant sustained estrous cyclicity following embryo transfer.  相似文献   

13.
Mature beef cows of 13 major and several minor breeds were repeatedly superovulated by injections of follicle stimulating hormone (FSH) and prostaglandin F2 alpha (PGF). Embryos were collected nonsurgically 6 to 8 days after artificial insemination. The average number of transferable embryos per collection was measured on the basis of all cows started on superovulation. Within groups of cows superovulated from two to ten times, embryo production per collection declined with repeated collections. This decline was not apparent in the pooled data when the mean number of embryos per collection the first through the tenth collection was 5.6, 5.1, 4.9, 5.0, 4.3, 5.1, 5.0, 5.0, 5.4, and 5.6 embryos, respectively. Embryo production at the first collection was one of the criteria for selecting cows for repeated superovulation. Cows superovulated more than three times had the highest embryo production at the first collection. The decline in embryo production with repeated superovulation could not be corrected by increasing the FSH dose. The number of embryos per collection was significantly correlated in cows superovulated repeated times. The correlation coefficients varied from 0.32 in cows superovulated twice to 0.35 in cows superovulated 10 times. The predictability of embryo production from cows that were selected to remain in the embryo transplant program, and were superovulated more and more times, did not increase. Some cows continued to produce embryos after 20 repeated superovulations. The results indicated that a cow should be superovulated two or three times before being discarded as a poor embryo producer.  相似文献   

14.
This study was designed to test the hypothesis that treatment with super-ovulatory drugs suppresses endogenous pulsatile LH secretion. Heifers (n=5/group) were superovulated with eCG (2500 IU) or FSH (equivalent to 400 mg NIH-FSH-P1), starting on Day 10 of the estrous cycle, and were injected with prostaglandin F(2alpha) on Day 12 to induce luteolysis. Control cows were injected only with prostaglandin. Frequent blood samples were taken during luteolysis (6 to 14 h after PG administration) for assay of plasma LH, estradiol, progesterone, testosterone and androstenedione. The LH pulse frequency in eCG-treated cows was significantly lower than that in control cows (2.4 +/- 0.4 & 6.4 +/- 0.4 pulses/8 h, respectively; P<0.05), and plasma progesterone (3.4 +/- 0.4 vs 1.8 +/- 0.1 ng/ml, for treated and control heifers, respectively; P<0.05) and estradiol concentrations (25.9 +/- 4.3 & 4.3 +/- 0.4 pg/ml, for treated and control heifers, respectively; P<0.05) were higher compared with those of the controls. No LH pulses were detected in FSH-treated cows, and mean LH concentrations were significantly lower than those in the controls (0.3 +/- 0.1 & 0.8 +/- 0.1, respectively; P<0.05). This suppression of LH was associated with an increase in estradiol (9.5 +/- 1.4 pg/ml; P<0.05 compared with controls) but not in progesterone concentrations (2.1 +/- 0.2 ng/ml; P>0.05 compared to controls). Both superovulatory protocols increased the ovulation rate (21.6 +/- 3.9 and 23.0 +/- 4.2, for eCG and FSH groups, respectively; P>0.05). These data demonstrate that super-ovulatory treatments decrease LH pulse frequency during the follicular phase of the treatment cycle. This could be explained by increased steroid secretion in the eCG-trated heifers but not in FSH-treated animals.  相似文献   

15.
This study aimed to evaluate the in vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatments in rabbit does. Ninety-six nulliparous does were randomly subjected to consecutive superovulation treatments with eCG (20 IU/kg body weight intramuscularly (i.m.), eCG group), FSH (3 x 0.6 mg/doe at 24 h intervals i.m., FSH group), or without superovulation treatment (control group). Does were artificially inseminated 3 days later and ovulation was induced immediately by hCG (75 IU/doe intravenous). Seven experimental groups were differentiated: first FSH and eCG treatment, second FSH and eCG treatment, eCG-interchanged group (does with previous FSH treatment), FSH-interchanged group (does with previous eCG treatments) and control group. Embryos were collected in vivo by laparoscopy 76-80 h post-insemination in the first and second recovery cycles and post mortem in the third recovery cycles. The ovulation rate was significantly higher in does treated with the first-FSH than in those treated with eCG or in control does (25.2+/-2.0 versus 19.2+/-1.4 to 11.0+/-1.5, and 12.2+/-1.2, first-FSH, first-eCG to second-eCG and control groups, respectively, P < 0.05). Significant differences were observed in the total recovery influenced by ovulation rate in each group (20.3+/-2.2 to 9.4+/-1.2, first-FSH to control groups). Embryo donor rate (donor with at least one normal embryo) was similar among groups with an overall of 75.1%. The number of normal embryos recovered per doe with at least one normal embryo increased significantly in relation to ovulation rate (17.7+/-2.2 to 8.41+/-3, first-FSH and control groups). The vitrification of embryos negatively affected their in vitro development to hatched blastocyst in all groups (88.1% versus 48%, P > 0.05). However, after embryo transfer, this negative effect was only observed in superovulated vitrified embryos (16.8 and 12.8% versus 39.4% total born rate from eCG, FSH and control vitrified groups, P < 0.05). Results indicated that the primary treatments with eCG or FSH increased the number of normal embryos recovered per donor doe, but these embryos are more sensitive to vitrification protocols.  相似文献   

16.
The objective of this study was to evaluate the transferable embryo recovery rates from superovulated donor cattle after different artificial insemination (AI) schedules. Sixty mixed-breed crossbred females were administered follicle stimulating hormone (FSH) and prostaglandin F(2)alpha (PGF(2)alpha) to induce a superovulatory response. At standing estrus, donor females were randomly allotted to one of five treatment groups for AI. Donors were inseminated with two units of high-quality or low-quality frozen semen at 12, 24, 36, or 48 h after the onset of estrus in treatment Groups I, II, III, and IV, respectively, or inseminated with two units at 12, 24, 36, and 48 h (eight units/donor) in control Group V. Donor females inseminated once at either 12 or 24 h after the onset of estrus did not differ from donors inseminated in Group V in overall fertilization and transferable embryo recovery rates. The highest fertilization rate (89.5%) and transferable embryo recovery rate (74.9%) per donor resulted when AI was performed with high-quality semen at 24 h after the onset of estrus. These findings indicate that repeated insemination of superovulated beef cattle is not necessary to attain optimal fertilization rates and production of transferable quality embryos in beef cattle.  相似文献   

17.
Nonlactating Dutch-Friesian cows were selected from a local slaughterhouse and synchronized with Syncro-Mate B. Cows with a normal progesterone pattern were treated with PMSG (3,000 I.U. i.m.) on Day 10 followed by PG (Prosolvin 22.5 mg) 48 h later. Blood samples were collected daily and at hourly intervals from 30 h after PG. Monoclonal anti-PMSG (Neutra-PMSG) was administered i.v. at 5.8 h after the LH peak in 16 cows; controls (n = 16) did not receive Neutra-PMSG. For comparison, 16 additional cows were superovulated with FSH-P in decreasing doses, twice a day (total 32 mg), starting at Day 10. All cows were inseminated at 10 h after the LH peak. Embryos were evaluated on Days 6 and 7 after flushing upon slaughter (recovery 87%). The number of corpora lutea and follicles on the donor ovaries were counted. No significant differences in the concentrations of progesterone and LH were observed between the three superovulation groups. Upon Neutra-PMSG, PMSG in blood was completely neutralized, it was decreased to < 0.5 ug/l at AI from 7.0 ug/l at the LH peak. The number of transferable embryos was significantly higher after Neutra-PMSG (9.1 per cow) than without Neutra-PMSG (5.3). or upon FSH-superovulation (4.6). The number of cysts on the ovaries of Neutra-PMSG-treated cows was reduced similarly to that after FSH-superovulation. Treatment with Neutra-PMSG shortly after the LH peak positively affects final follicular maturation in PMSG-superovulated cows and results in a nearly two-fold increase of transferable embryos.  相似文献   

18.
The gonadotropin releasing hormone analog, Buserelin, was tested in a superovulatory regimen in cows by administering 8 mug of it at the following times: Group I (12 cows), 48 h after the first prostaglandin F(2) alpha (PGF) injection: Group II (11 cows), 54 h after PGF: Group III (10 cows), 24 h after standing estrus was first observed; and Group IV (12 cows), served as superovulated controls. The cows were lactating Holsteins between 45 and 143 d post partum, with at least one estrus prior to superovulation. The number of embryos collected from Groups I, II, III and IV 7 d after estrus averaged 4.5, 8.1, 6.4 and 5.6, respectively (P>0.05). The fertilization rate in the three groups receiving Buserelin was 83 versus 76% for controls (P<0.10). Blood and milk samples taken just before starting follicle stimulating hormone treatment at the expected estrus and at the time of embryo recovery were tested for progesterone concentration, and results from a rapid ELISA test were useful in identifying cows that a) were unsuitable for superovulation, b) should have been in estrus but were not observed standing and c) produced few, if any, embryos.  相似文献   

19.
A total of 47 superovulations were conducted on forty non-lactating cows to evaluate two different schemes using follicle stimulating hormone (FSH) for superovulating cattle. Cows randomly assigned to treatment A (26 collections) were superovulated beginning on days 9 to 13 of the estrous cycle by giving FSH at decreasing doses of 6, 6, 5, 5, 3, 3, and 2, 2 mg for 4 consecutive days at 12-h intervals while those in treatment B (21 collections) also received 2.5 mg of FSH on days 3 and 4 of the estrous cycle. Animals in both treatments were each given 12.5 mg of prostaglandin F(2alpha) (PGF(2alpha)) at 60 and 72 h after the initiation of superovulatory treatment. Cows were artificially inseminated at 0, 12, and 24 h after the onset of estrus. Embryos were recovered nonsurgically on d 6 and morphologically evaluated. Ovaries of the cows were palpated at the end of flushings to assess the number of corpora lutea (CL). The mean interval from PGF(2alpha) to the onset of estrus was not different (P>0.05) for treatments A (56.6 h) and B (50.0 h). Also, mean duration of standing estrus was not different for either treatment (13.4 h vs 12.8 h). The mean number of CL palpated (7.3 vs 12.9) and ova recovered (5.5 vs 14.2) were significantly greater (P<0.05) for treatment B. The mean number of excellent and good embryos recovered was lower for treatment A animals, but not significant (P>0.05). Therefore, low doses of FSH given at the beginning of the cycle increased ovulation rate and embryo recovery in non-lactating cows.  相似文献   

20.
A total of 71 lactating and nonlactating buffalo-cows of the Murrah breed and F(1)-F(3) crossbreds of Murrah x Bulgarian buffalo were used for a year as donors of embryos after a preliminary treatment for superovulation induction with pregnant mare serum gonadotrophin (PMSG) or follicle stimulating hormone (FSH) in combination with prostaglandin F-2 alpha analog (PGF-2 alpha) according to general application procedures in cows. From 36 to 72 h following prostaglandin injection, the buffalo-cows were checked with the help of a teaser bull for detection of estrus. The animals in estrus were inseminated twice either naturally or artificially with frozen semen. Nonsurgical flushing of the uterine horns was done in 45 of the buffalo-cows between 108 and 162 h after the onset of estrus. After slaughter the uterine horns and oviducts of the other 26 animals were flushed separately between 74 and 108 h after the beginning of estrus. Seven late morulae and eight hatched blastocysts were recovered between 114 and 116 h from the onset of estrus as a result of nonsurgical flushing. All of the 40 embryos recovered after 117 h were in the hatched blastocyst stage. As a result of flushing the oviducts and the uterine horns of slaughtered donors between 74 and 100 h, eggs were obtained only from the oviducts, while flushing conducted between 102 and 108 yielded eggs from both the oviducts and the uterine horns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号