首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). A series of mono-, di- and triacidic acid methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutant (CMM) enzymes were determined at pH 8.6 under conditions which ensured complete ionization of the unnatural amino acid side-chains introduced. The presence of up to three negative charges in the S1, S1' and S2 subsites of SBL resulted in up to 11-fold lowered activity, possibly due to interference with oxyanion stabilization of the transition state of the hydrolytic reactions catalyzed. Each unit increase in negative charge resulted in a raising of K(M) and a reduction of k(cat). However, no upper limit was observed for increases in K(M), whereas decreases in k(cat) reached a limiting value. Comparison with sterically similar but uncharged CMMs revealed that electrostatic effects of negative charges at positions 62, 156 and 217 are detrimental, but are beneficial at position 166. These results indicate that the ground-state binding of SBL to the standard substrate, Suc-AAPF-pNA, to SBL is reduced, but without drastic attenuation of catalytic efficiency, and show that SBL tolerates high levels of charge at single sites.  相似文献   

2.
Glycoproteins occur naturally as complex mixtures of differently glycosylated forms which are difficult to separate. To explore their individual properties, there is a need for homogeneous sources of carbohydrate-protein conjugates and this has recently prompted us to develop a novel method for the site-selective glycosylation of proteins. The potential of the method was illustrated by site-selective glycosylations of subtilisin Bacillus lentus (SBL) as a model protein. A representative library of mono- and disaccharide MTS reagents were synthesized from their parent carbohydrates and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. These were the first examples of preparations of homogeneous neoglycoproteins in which both the site of glycosylation and structure of the introduced glycan were predetermined. The scope of this versatile method was expanded further through the combined use of peracetylated MTS reagents and careful pH adjustment to introduce glycans containing different numbers of acetate groups. This method provides a highly controlled and versatile route that is virtually unlimited in the scope of the sites and glycans that may be conjugated, and opens up hitherto inaccessible opportunities for the systematic determination of the properties of glycosylated proteins. This potential has been clearly demonstrated by the determination of detailed glycan structure-hydrolytic activity relationships for SBL. The 48 glycosylated CMMs formed display kcat/KM values that range from 1.1-fold higher than WT to 7-fold lower than WT. The anomeric stereochemistry of the glycans introduced modulates changes in kcat/KM upon acetylation. At positions 62 and 217 acetylation enhances the activity of alpha-glycosylated CMMs but decreases that of beta-glycosylated. This trend is reversed at position 166 where, in contrast, acetylation enhances the kcat/KMs of beta-glycosylated CMMs but decreases those of alpha-glycosylated. Consistent with its surface exposed nature changes at position 156 are more modest, but still allow control of activity, particularly through glycosylation with disaccharide lactose.  相似文献   

3.
Using site directed mutagenesis combined with chemical modification, we have developed a general and versatile method for the glycosylation of proteins which is virtually unlimited in the scope of proteins and glycans that may be conjugated and in which the site of glycosylation and the nature of the introduced glycan can be carefully controlled. We have demonstrated the applicability of this method through the synthesis of a library of 48 glycosylated forms of the serine protease subtilisin Bacillus lentus (SBL) as single, pure species. As part of our ongoing program to tailor the activity of SBL for use in peptide synthesis, we have screened these enzymes for activity against the esterase substrate succinyl-Ala-Ala-Pro-Phe-S-benzyl. Gratifyingly, 22 enzymes displayed greater than wild type (WT) activity. Glycosylation at positions 62, in the S2 pocket, resulted in five glycosylated forms of SBL that were 1.3- to 1.9-fold more active than WT. At position 217, in the S1' pocket, all glycosylations increased kcat/KM up to a remarkable 8.4-fold greater than WT for the glucosylated enzyme L217C-S-beta-Glc(Ac)3. Furthermore, the ratio of amidase to esterase activity, (kcat/KM)esterase/(kcat/KM)amidase (E/A), is increased relative to wild type for all 48 glycosylated forms of SBL. Again, the most dramatic changes are observed at positions 62 and 217 and L217C-S-beta-Glc(Ac)3 has an E/A that is 17.2-fold greater than WT. The tailored specificity and high activity of this glycoform can be rationalized by molecular modeling analysis, which suggests that the carbohydrate moiety occupies the S1' leaving group pocket and enhances the rate of deacylation of the acyl-enzyme intermediate. These glycosylated enzymes are ideal candidates for use as catalysts in peptide synthesis as they have greatly increased (kcat,KM)esterase and severely reduced (kcat/KM)amidase and will favor the formation of the amide bond over hydrolysis.  相似文献   

4.
A series of chemically modified mutants (CMMs) of subtilisin B. lentus (SBL) were generated employing the combination of site-directed mutagenesis and chemical modification. This strategy entails the mutation of a selected active site residue to cysteine and its subsequent modification with a methanethiosulfonate reagent CH3SO2S-R, where R may be infinitely variable. The present study was undertaken to evaluate the changes in specificity and pH-activity profiles that could be induced by modification of S156C and S166C in the S1 pocket of SBL with a representative range of side chain modifications, namely R=-CH3, -CH2C6H5, -CH2CH2NH3+ and CH2CH2SO3 . The side chain of S156C is surface exposed and well solvated while that of S166C points into the pocket. Kinetic evaluation of the CMMs with suc-AAPF-pNA as substrate showed that the kcat/K(M)s changed very little for the S156C CMMs, but varied by up to 11-fold for the S166C CMMs. pH-Activity profiles were also determined, and showed that a negatively or positively charged side chain modification increased or decreased respectively, the pKa of the catalytic triad histidine for both modification sites but with more dramatic changes for the interior pointing S166C than for the solvent exposed S156C site. As an additional probe of altered specificity, inhibition of the CMMs by a representative series of 5 boronic acid transition state analogue inhibitors was determined. The K(I)s observed ranged from a 3.5-fold improvement over the WT value, to a 12-fold decrease in binding. Overall, greater variability in all the parameters measured, activity, pKa, and boronic acid binding resulted from modification at the inward pointing 166 site than at the solvent-exposed 156 site.  相似文献   

5.
P2X receptor subunits have intracellular N and C termini, two membrane-spanning domains, and an extracellular loop of about 280 amino acids. We expressed the rat P2X(2) receptor in human embryonic kidney cells, and used alanine-scanning mutagenesis on 30 residues with polar side chains conserved among the seven rat P2X receptor subunits. This identified a region proximal to the first transmembrane domain which contained 2 lysine residues that were critical for the action of ATP (Lys(69) and Lys(71)). We substituted cysteines in this region (Asp(57) to Asp(71)) and found that for S65C and I67C ATP-evoked currents were inhibited by methanethiosulfonates. At I67C, the inhibition by negatively charged ethylsulfonate and pentylsulfonate derivatives could be overcome by increasing the ATP concentration, consistent with a reduced affinity of ATP binding. The inhibitory action of the methanethiosulfonates was prevented by pre-exposure to ATP, suggesting occlusion of the binding site. Finally, introduction of negative charges into the receptor by mutagenesis at this position (I67E and I67D) also gave receptors in which the ATP concentration-response curve was right-shifted. The results suggest that residues close to Ile(67) contribute to the ATP-binding site.  相似文献   

6.
Agarwal R  Binz T  Swaminathan S 《Biochemistry》2005,44(23):8291-8302
Clostridial neurotoxins comprising the seven serotypes of botulinum neurotoxins and tetanus neurotoxin are the most potent toxins known to humans. Their potency coupled with their specificity and selectivity underscores the importance in understanding their mechanism of action in order to develop a strategy for designing counter measures against them. To develop an effective vaccine against the toxin, it is imperative to achieve an inactive form of the protein which preserves the overall conformation and immunogenicity. Inactive mutants can be achieved either by targeting active site residues or by modifying the surface charges farther away from the active site. The latter affects the long-range forces such as electrostatic potentials in a subtle way without disturbing the structural integrity of the toxin causing some drastic changes in the activity/environment. Here we report structural and biochemical analysis on several mutations on Clostridium botulinum neurotoxin type E light chain with at least two producing dramatic effects: Glu335Gln causes the toxin to transform into a persistent apoenzyme devoid of zinc, and Tyr350Ala has no hydrolytic activity. The structural analysis of several mutants has led to a better understanding of the catalytic mechanism of this family of proteins. The residues forming the S1' subsite have been identified by comparing this structure with a thermolysin-inhibitor complex structure.  相似文献   

7.
8.
Recognition of cleavage site A(2) in the yeast pre-rRNA.   总被引:6,自引:2,他引:4       下载免费PDF全文
Processing of the yeast pre-rRNA at site A(2) internal transcribed spacer 1(ITS1) has been shown to require several small nucleolar ribonucleoprotein particles (snoRNPs) as trans-acting factors. Here we report a detailed mutational analysis of the cid-acting signals required to specify the site of A(2) lie in the 3'-flanking sequence; deletion or substitution of nucleotides in this region strongly inhibits processing, and residual cleavage is inaccurate at the nucleotide level. In contrast, the deletion of the 5'- flanking nucleotides has no detectable effect on processing. An evolutionarily conserved sequence, ACAC, is located at the site of cleavage. Substitution of the 3' AC leads to heterogeneous cleavage, with activation of cleavage at an upstream ACAC sequence, In all mutants that retain an ACAC element, a site of cleavage is detected immediately 5' to this sequence, showing that this element is recognized. An ACAC sequence is, however, not essential for accurate cleavage of site A(2). An additional signal is also present 3' to A(2), in a region that has the potential to form a stem-loop structure that is evolutionarily conserved, but of low stability. As has been found for site A(1) (the 5' end of the yeast 18S rRNA), the identification of the site of processing at A(2) relies on multiple recognition elements.  相似文献   

9.
10.
Lipoxygenase enzymes initiate diverse signaling pathways by specifically directing oxygen to different carbons of arachidonate and other polyunsaturated acyl chains, but structural origins of this specificity have remained unclear. We therefore determined the nature of the lipoxygenase interaction with the polar-end of a paramagnetic lipid by electron paramagnetic resonance spectroscopy. Distances between selected grid points on soybean seed lipoxygenase-1 (SBL1) and a lysolecithin spin-labeled on choline were measured by pulsed (electron) dipolar spectroscopy. The protein grid was designed by structure-based modeling so that five natural side chains were replaced with spin labels. Pairwise distances in 10 doubly spin-labeled mutants were examined by pulsed dipolar spectroscopy, and a fit to the model was optimized. Finally, experimental distances between the lysolecithin spin and each single spin site on SBL1 were also obtained. With these 15 distances, distance geometry localized the polar-end and the spin of the lysolecithin to the region between the two domains in the SBL1 structure, nearest to E236, K260, Q264, and Q544. Mutation of a nearby residue, E256A, relieved the high pH requirement for enzyme activity of SBL1 and allowed lipid binding at pH 7.2. This general approach could be used to locate other flexible molecules in macromolecular complexes.  相似文献   

11.
The U1 snRNP is known to play a critical role in spliceosome assembly, at least in part through base pairing of its RNA moiety to the substrate, but many details remain to be elucidated. To further dissect U1 snRNA function, we have analyzed 14 single point mutations in the six nucleotides complementary to the 5' splice site for their effects on growth and splicing in the fission yeast Schizosaccharomyces pombe. Three of the four alleles previously found to support growth of Saccharomyces cerevisiae are lethal in S. pombe, implying a more critical role for the 5' end of U1 in fission yeast. Furthermore, a comparison of phenotypes for individual nucleotide substitutions suggests that the two yeasts use different strategies to modulate the extent of pairing between U1 and the 5' splice site. The importance of U1 function in S. pombe is further underscored by the lethality of several single point mutants not examined previously in S. cerevisiae. In total, only three alleles complement the U1 gene disruption, and these strains are temperature-sensitive for growth. Each viable mutant was tested for impaired splicing of three different S. pombe introns. Among these, only the second intron of the cdc2 gene (cdc2-I2) showed dramatic accumulation of linear precursor. Notably, cdc2-I2 is spliced inefficiently even in cells containing wild-type U1, at least in part due to the presence of a stable hairpin encompassing its 5' splice site. Although point mutations at the 5' end of U1 have no discernible effect on splicing of pre-U6, significant accumulation of unspliced RNA is observed in a metabolic depletion experiment. Taken together, these observations indicate that the repertoire of U1 activities is used to varying extents for splicing of different pre-mRNAs in fission yeast.  相似文献   

12.
We isolated and characterized three spontaneous mutants of Chinese hamster ovary cells that were deficient in dihydrofolate reductase activity. All three mutants contained no detectable enzyme activity and produced dihydrofolate reductase mRNA species that were shorter than those of the wild type by about 120 bases. Six exons are normally represented in this mRNA; exon 5 was missing in all three mutant mRNAs. Nuclease S1 analysis of the three mutants indicated that during the processing of the mutant RNA, exon 4 was spliced to exon 6. The three mutant genes were cloned, and the regions around exons 4 and 5 were sequenced. In one mutant, the GT dinucleotide at the 5' end of intron 5 had changed to CT. In a second mutant, the first base in exon 5 had changed from G to T. In a revertant of this mutant, this base was further mutated to A, a return to a purine. Approximately 25% of the mRNA molecules in the revertant were spliced correctly to produce an enzyme with one presumed amino acid change. In the third mutant, the AG at the 3' end of intron 4 had changed to AA. A mutation that partially reversed the mutant phenotype had changed the dinucleotide at the 5' end of intron 4 from GT to AT. The splicing pattern in this revertant was consistent with the use of cryptic donor and acceptor splice sites close to the original sites to produce an mRNA with three base changes and a protein with two amino acid changes. These mutations argue against a scanning model for the selection of splice site pairs and suggest that only a single splice site need be inactivated to bring about efficient exon skipping (a regulatory mechanism for some genes). The fact that all three mutants analyzed exhibited exon 5 splicing mutations indicates that these splice sites are hot spots for spontaneous mutation.  相似文献   

13.
14.
Activated Protein C (APC) inactivates factor VIIIa by cleavage at Arg(336) and Arg(562) within the A1 and A2 subunits, respectively, with reaction at the former site occurring at a rate approximately 25-fold faster than the latter. Recombinant factor VIII variants possessing mutations within the P4-P3' sequences were used to determine the contributions of these residues to the disparate cleavage rates at the two P1 sites. Specific activity values for 336(P4-P3')562, 336(P4-P2)562, and 336(P1'-P3')562 mutants, where indicated residues surrounding the Arg(336) site were replaced with those surrounding Arg(562), were similar to wild type (WT) factor VIII; whereas 562(P4-P3')336 and 562(P4-P2)336 mutants showed specific activity values <1% the WT value. Inactivation rates for the 336 site mutants were reduced approximately 6-11-fold compared with WT factor VIIIa, and approached values attributed to cleavage at Arg(562). Cleavage rates at Arg(336) were reduced approximately 100-fold for 336(P4-P3')562, and approximately 9-16-fold for 336(P4-P2)562 and 336(P1'-P3')562 mutants. Inhibition kinetics revealed similar affinities of APC for WT factor VIIIa and 336(P4-P3')562 variant. Alternatively, the 562(P4-P3')336 variant showed a modest increase in cleavage rate ( approximately 4-fold) at Arg(562) compared with WT, whereas these rates were increased by approximately 27- and 6-fold for 562(P4-P3')336 and 562(P4-P2)336, respectively, using the factor VIII procofactor form as substrate. Thus the P4-P3' residues surrounding Arg(336) and Arg(562) make significant contributions to proteolysis rates at each site, apparently independent of binding affinity. Efficient cleavage at Arg(336) by APC is attributed to favorable P4-P3' residues at this site, whereas cleavage at Arg(562) can be accelerated following replacement with more optimal P4-P3' residues.  相似文献   

15.
16.
G DeSantis  X Shang  J B Jones 《Biochemistry》1999,38(40):13391-13397
In both protein chemistry studies and organic synthesis applications, it is desirable to have available a toolbox of inexpensive proteases with high selectivity and diverse substrate preferences. Toward this goal, we have generated a series of chemically modified mutant enzymes (CMMs) of subtilisin B. lentus (SBL) possessing expanded S(1) pocket specificity. Wild-type SBL shows a marked preference for substrates with large hydrophobic P(1) residues, such as the large Phe P(1) residue of the standard suc-AAPF-pNA substrate. To confer more universal P(1) specificity on S(1), a strategy of chemical modification in combination with site-directed mutagenesis was applied. For example, WT-SBL does not readily accept small uncharged P(1) residues such as the -CH(3) side chain of alanine. Accordingly, with a view to creating a S(1) pocket that would be of reduced volume providing a better fit for small P(1) side chains, a large cyclohexyl group was introduced by the CMM approach at position S166C with the aim of partially filling up the S(1) pocket. The S166C-S-CH(2)-c-C(6)H(11) CMM thus created showed a 2-fold improvement in k(cat)/K(M) with the suc-AAPA-pNA substrate and a 51-fold improvement in suc-AAPA-pNA/suc-AAPF-pNA selectivity relative to WT-SBL. Furthermore, WT-SBL does not readily accept positively or negatively charged P(1) residues. Therefore, to improve SBL's specificity toward positively and negatively charged P(1) residues, we applied the CMM methodology to introduce complementary negatively and positively charged groups, respectively, at position S166C in S(1). A series of mono-, di-, and trinegatively charged CMMs were generated and all showed improved k(cat)/K(M)s with the positively charged P(1) residue containing substrate, suc-AAPR-pNA. Furthermore, virtually arithmetic improvements in k(cat)/K(M) were exhibited with increasing number of negative charges on the S166C-R side chain. These increases culminated in a 9-fold improvement in k(cat)/K(M) for the suc-AAPR-pNA substrate and a 61-fold improvement in suc-AAPR-pNA/suc-AAPF-pNA selectivity compared to WT-SBL for the trinegatively charged S166C-S-CH(2)CH(2)C(COO(-))(3) CMM. Conversely, the positively charged S166C-S-CH(2)CH(2)NH(3)(+) CMM generated showed a 19-fold improvement in k(cat)/K(M) for the suc-AAPE-pNA substrate and a 54-fold improvement in suc-AAPE-pNA/suc-AAPF-pNA selectivity relative to WT-SBL.  相似文献   

17.
The interaction of P1 and P3 side chains with the combining S1 and S3 hydrophobic subsites of HIV and FIV proteases has been explored using asymmetric competitive inhibitors. The inhibitors evaluated contained (2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid (allophenylnorstatine) as the hydroxymethylcarbonyl isostere, (R)-5,5-dimethyl-1, 3-thiazolidine-4-carbonyl as P1', Val as P2 and P2' residues, and a variety of amino acids at the P3 and P3' positions. All inhibitors showed competitive inhibition of both enzymes with higher potency against the HIV protease in vitro. Within this series, 31 (VLE776) is the most effective inhibitor against FIV protease, and it contains Phe at P3, but no P3' residue. VLE776 also exhibited potent antiviral activities against the drug-resistant HIV mutants (G48V and V82F) and the TL3-resistant HIV mutants. Explanation of the inhibition activities was described. In addition, a new strategy was described for development of bifunctional inhibitors, which combine the protease inhibitor and another enzyme inhibitor in one molecule.  相似文献   

18.
Recent kinetics experiments using mutants of the bc(1) complex (ubihydroquinone-cytochrome c oxidoreductase) iron-sulfur subunit with modified hinge regions have revealed the crucial role played by the large scale movement of its [2Fe-2S] cluster domain during the activity of this enzyme. In particular, one of these mutants (+1Ala) with an insertion of one alanine residue in the hinge region is partially deficient in performing this movement. We found that this defect can be overcome by the appearance of a second mutation substituting the leucine at position 286 in the ef loop of cytochrome b with a phenylalanine. Detailed studies of these mutants and their derivatives revealed that the ef loop acts as a barrier that needs to be crossed for multiple turnovers of the enzyme but not for a single turnover ubihydroquinone oxidation site catalysis. These findings indicate that the movement of the iron-sulfur subunit is composed of two discrete parts: a "micro-movement" at the cytochrome b interface, during which the [2Fe-2S] cluster interacts with ubihydroquinone oxidation site occupants and catalyzes ubihydroquinone oxidation, and a "macro-movement," during which the cluster domain swings away from cytochrome b interface, crosses the ef loop, and reaches a position close to cytochrome c(1) heme, to which it ultimately transfers an electron.  相似文献   

19.
Region E3 of adenovirus encodes about 10 overlapping mRNAs with different spliced structures. The mRNAs are 5' coterminal and form two major 3'-coterminal families termed E3A and E3B. As a group, the mRNAs have two 5' splice sites and four or five 3' splice sites. We previously described a novel class of virus mutants with deletions that enhance distant upstream and downstream 5' and 3' splice sites in region E3 (S. L. Deutscher, B. M. Bhat, M. H. Pursley, C. Cladaras, and W. S. M. Wold, Nucleic Acids Res. 13:5771-5788, 1985). We now report that two of these mutants, dl710 and dl712, are defective in RNA 3'-end formation at the E3A site. This result was surprising because the deletions in dl710 and dl712 are upstream of the putative signal for E3A RNA 3'-end formation. The explanation that we favor for this result is that the enhanced splicing activity in these mutants results in the splicing out of the E3A 3'-end site from the RNA precursor before the E3A 3' ends have a chance to form.  相似文献   

20.
HIV-1 develops resistance to protease inhibitors predominantly by selecting mutations in the protease gene. Studies of resistant mutants of HIV-1 protease with single amino acid substitutions have shown a range of independent effects on specificity, inhibition, and stability. Four double mutants, K45I/L90M, K45I/V82S, D30N/V82S, and N88D/L90M were selected for analysis on the basis of observations of increased or decreased stability or enzymatic activity for the respective single mutants. The double mutants were assayed for catalysis, inhibition, and stability. Crystal structures were analyzed for the double mutants at resolutions of 2.2-1.2 A to determine the associated molecular changes. Sequence-dependent changes in protease-inhibitor interactions were observed in the crystal structures. Mutations D30N, K45I, and V82S showed altered interactions with inhibitor residues at P2/P2', P3/P3'/P4/P4', and P1/P1', respectively. One of the conformations of Met90 in K45I/L90M has an unfavorably close contact with the carbonyl oxygen of Asp25, as observed previously in the L90M single mutant. The observed catalytic efficiency and inhibition for the double mutants depended on the specific substrate or inhibitor. In particular, large variation in cleavage of p6(pol)-PR substrate was observed, which is likely to result in defects in the maturation of the protease from the Gag-Pol precursor and hence viral replication. Three of the double mutants showed values for stability that were intermediate between the values observed for the respective single mutants. D30N/V82S mutant showed lower stability than either of the two individual mutations, which is possibly due to concerted changes in the central P2-P2' and S2-S2' sites. The complex effects of combining mutations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号