首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The secretion of human chorionic gonadotropin (hCG) is stimulated by addition of N6, O2'-dibutyryl cyclic 3':5'-AMP (dbcAMP) or theophylline to normal term placenta and human malignant trophoblast cells in vitro. To understand better the specificity of this process, malignant trophoblast cultures were incubated with 3':5'-cyclic AMP (cAMP) derivatives, prostaglandins and other agents for 1 to 3 days, and the secretion of radioimmunoassayable hCG was measured. Whereas dbcAMP was the most potent agent in stimulating secretion of hCG, the N6--and O2'-monobutyryl derivatives of cAMP and phosphodiesterase inhibitors (theophylline, papaverine, 3-isobutyl-1-methylxanthine) also increased the secretion of the hormone. A slight increase in hCG secretion was observed following addition of adenine. By contrast, butyrate, cAMP, cyclic 3':5'-GMP (cGMP), dbcGMP, 5'-AMP, adenosine, L-epinephrine and prostaglandins E1, E2, F1a and F2a were ineffective. Particulate fractions from sonicates of malignant trophoblast cultures contained adenylate cyclase activity which was stimulated more than 10-fold by NaF, but not by either catecholamines or prostaglandins. The relatively specific stimulation of hCG secretion suggested that a regulatory process involving cAMP may have physiological significance in the trophoblast.  相似文献   

2.
The effect of tetradecanoylphorbol acetate (TPA) on follicle-stimulating hormone (FSH)-induced synthesis of the cholesterol side-chain cleavage (SCC) enzyme complex was studied in rat ovarian granulosa cells cultured for 48 h in serum-free medium. Cell proteins were radiolabeled with [35S]methionine, followed by immunoprecipitation of cholesterol side-chain cleavage cytochrome P-450 (P-450SCC) as well as the iron-sulfur protein adrenodoxin. Polyacrylamide gel electrophoresis and fluorography of the immunoprecipitates showed that TPA, when added in combination with FSH (50 ng/ml) or dibutyryl cAMP (Bt2cAMP; 1 mM), suppressed the stimulatory effects of these compounds on the synthesis of the SCC components in a concentration-dependent fashion. The effect of TPA was accompanied by decreased progesterone formation and decreased cAMP accumulation. The structural analog of TPA, phorbol-4 alpha-didecanoate, which does not activate protein kinase C (Ca2+/phospholipid-dependent enzyme), had no effect on the FSH- or Bt2cAMP-stimulated synthesis of SCC and progesterone or on cAMP formation. In addition to inhibiting the synthesis of these proteins, TPA greatly reduced the FSH- and Bt2cAMP-induced increase in levels of mRNA encoding the precursor form of P-450SCC. It is concluded that the effect of the phorbol ester TPA to inhibit FSH-stimulated progesterone formation in cultured ovarian granulosa cells of the rat involves decreased synthesis of the components of the SCC enzyme complex due to reduced levels of mRNA encoding the precursor forms of these proteins. The results are indicative that TPA not only inhibits FSH-mediated stimulation of cAMP formation but also may block cAMP-mediated induction of SCC synthesis. It is postulated that the effects of TPA may reflect the physiological role of protein kinase C in the regulation of ovarian steroidogenesis.  相似文献   

3.
L R Chaudhary  D M Stocco 《Biochimie》1988,70(12):1799-1806
Using a cloned Leydig tumor cell line (designated MA-10), we have studied the activity of cholesterol side-chain (CSCC) enzyme, the rate-determining step in steroidogenesis, in mitochondria isolated from cells pretreated either with human chorionic gonadotropin (hCG) or dibutyryl cyclic adenosine monophosphate (dbcAMP). Results showed a slight but significant increase in CSCC activity with treatment by cAMP (25% increase) and hCG (60% increase), as compared to mitochondria isolated from nontreated control cells. However, this stimulation of CSCC activity appears to be of limited significance when compared to the approximately 1000-fold or greater increase observed in progesterone production in the presence of hCG or dbcAMP. On the other hand, unstimulated MA-10 cells or isolated mitochondria efficiently converted 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone, and this conversion was not affected by cycloheximide. The addition of cholesterol to intact cells or to isolated mitochondria did not affect progesterone production. Our observations clearly indicate that given the proper hydroxy substrates (22R-hydroxycholesterol or 25-hydroxycholesterol), MA-10 Leydig cells are able to convert them into progesterone without any stimulation by steroidogenic stimuli, i.e. cAMP or hCG. Since MA-10 Leydig cells can efficiently convert 22R-hydroxycholesterol--an intermediate in CSCC reaction--into progesterone, these results suggest that the key regulatory step in the mechanism of trophic hormone-stimulated steroid production is the first hydroxylation step of the 3 sequential monooxygenation reactions involved in the conversion of cholesterol to pregnenolone.  相似文献   

4.
In this study we attempted to examine the effects of ketoconazole on steroid biosynthesis and to determine which steps in the steroidogenic pathway were blocked using MA-10 Mouse Leydig tumor cells. This cloned cell line produces progesterone as the major steroid following stimulation by hCG or dbcAMP. At a concentration of 1 microM ketoconazole completely inhibited the hCG- and dbcAMP-stimulated progesterone synthesis in MA-10 Leydig cells. The conversion of 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone was also suppressed by this drug. The presence of ketoconazole inhibited mitochondrial steroid synthesis but required high concentrations of the drug as compared to inhibition in intact cells. No accumulation of pregnenolone was observed in the presence of ketoconazole indicating that the activity of 3 beta-hydroxysteroid dehydrogenase was not affected. We conclude that ketoconazole directly inhibits the activity of cholesterol side-chain cleavage enzyme (CSCC), a rate-determining enzymatic step in steroidogenesis, by interacting with cytochrome P-450scc.  相似文献   

5.
Lipoprotein cholesterol (C) supports the high rate of progesterone production by the human placenta as endogenous cholesterol synthesis is low. To study underlying mechanisms whereby lipoproteins, including high density lipoprotein-2 (HDL2), stimulate progesterone secretion, trophoblast cells were isolated from human term placentas and maintained in primary tissue culture. Lipoproteins were added at several concentrations and medium progesterone secretion was determined. HDL2 (d 1.063-1.125 g/ml) as well as low density lipoproteins (LDL) (d 1.019-1.063 g/ml) but not HDL3 (d 1.125-1.21 g/ml) stimulated progesterone secretion in a dose-dependent manner, with HDL2 cholesterol entering the cell and serving as substrate for progesterone synthesis. Conversely, LDL and HDL2 produced a significant decrease in [2-14C]acetate incorporation into cell cholesterol. Cholesterol-depleted lipoproteins did not stimulate progesterone secretion. The stimulating effect of LDL was abolished by apolipoprotein modification by cyclohexanedione or reductive methylation and by the addition of anti-LDL receptor antibody or 10 microM chloroquine to the medium. [14C]acetate conversion into cholesterol was accelerated by these procedures. However, HDL2 stimulation of progesterone secretion and reduction of [14C]acetate incorporation into cholesterol was not blocked by chemical modification of apolipoproteins, anti-LDL receptor antibody, or chloroquine. Treatment of HDL2 with tetranitromethane or dimethylsuberimidate also did not block the stimulation of progesterone. To determine whether the capacity of HDL2 to deliver cholesterol to the trophoblast cells was restricted to subfractions differing in apoE content, HDL2 was chromatographed on heparin-Sepharose and three fractions (A, B, and C) were obtained. Fraction A was poorest in apoE and free cholesterol, fraction B contained the majority of cholesterol, and fraction C was the richest in apoE and free cholesterol. When added to trophoblast cells, fraction A stimulated little progesterone secretion, fraction B stimulated moderately, and fraction C did so greatly. Modification of these subfractions with cyclohexanedione or reductive methylation did not inhibit these effects. In conclusion, HDL2 stimulated progesterone secretion in human trophoblast cell culture. Contrary to LDL, the HDL effect was not mediated by apolipoproteins or the LDL receptor pathway. The ability of HDL2 to stimulate progesterone secretion is consistent with the passive transfer of free cholesterol to the cell membrane from a physicochemically specific subfraction of HDL. This mechanism may be an auxiliary source of cholesterol for human steroidogenic cells.  相似文献   

6.
Rat Leydig cells in primary culture were used as a model system to investigate the effects of human chorionic gonadotropin (hCG) and dibutyryl cyclic AMP (Bt2cAMP) on the synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and the iron-sulfur protein, adrenodoxin. Leydig cells isolated from the testes of mature rats were placed in monolayer culture in the absence of stimulatory factors for 8 days. HCG (10 mIU/ml) or Bt2cAMP (1 mM) were then added to some of the cultures and the incubations were continued for up to 48 h. Testosterone production was increased markedly in cells incubated with hCG or Bt2cAMP. A significant accumulation of pregnenolone in the medium of cells treated with Bt2cAMP was also observed. Both hCG and Bt2cAMP increased the rates of synthesis of cytochrome P-450scc and adrenodoxin. In hCG-treated cells the apparent rate of synthesis of cytochrome P-450scc was increased 13-fold over that of controls after 48 h of incubation; the rate of adrenodoxin synthesis was increased 4-fold by hCG treatment. In Bt2cAMP-treated cells the rate of synthesis of cytochrome P-450scc was 37-fold greater than that of control cells after 48 h of incubation; adrenodoxin synthesis was increased 36-fold over controls. In hCG- and Bt2cAMP-treated cells, the concentration of immunoreactive cytochrome P-450scc and adrenodoxin increased with increasing time of incubation, and were correlated with the stimulatory effects of these agents on cytochrome P-450scc activity and on total steroid production. The results of this study are indicative that the maintenance by LH/hCG of elevated levels of testosterone synthesis by the Leydig cell is mediated, in part, by induction of the synthesis of cytochrome P-450scc and its associated protein, adrenodoxin. Since Bt2cAMP had effects similar to those observed with hCG, it is suggested that the stimulatory effects of hCG on the synthesis of cytochrome P-450scc and adrenodoxin are mediated by increased cyclic AMP formation.  相似文献   

7.
A number of studies have indicated that increased production of steroids can be obtained with doses of tropic hormone which do not result in detectable increases in intracellular cAMP. It has been suggested that this may be a result of compartmentalization or functional coupling of cAMP generated by hormone-receptor interactions to specific steroid producing pathways in the cell. In the present study we have stimulated the MA-10 mouse Leydig tumour cell with hCG, dibutyryl cAMP (dbcAMP) and forskolin to determine if functional coupling of cAMP occurs. Treatment with hCG, dbcAMP and forskolin all resulted in significant increases in the production of progesterone, the major steroid produced in these cells. Stimulation with hCG followed by 2D-PAGE analysis of the proteins resulted in the appearance of two proteins in the 30,000 molecular weight range (pI 6.8 and 6.6) and two in the 25,000-27,000 region (pI 5.9-6.0). Stimulation with dbcAMP or forskolin resulted in the appearance of the same proteins seen with hCG, but also in the appearance of two additional proteins, also having molecular weights of approximately 30,000 (pI 6.3 and 6.1). These data indicate that cAMP generated via hCG stimulation, whilst able to generate similar amounts of progesterone, does not stimulate the synthesis of the same proteins as does cAMP added exogenously or generated through indiscriminate activation of adenylate cyclase activity. Thus, it would appear that the gonadotropin activated pathway generates cAMP which remains functionally compartmentalized within the cell.  相似文献   

8.
Summary The secretion of human chorionic gonadotropin (hCG) is stimulated by addition of N6, O2′-dibutyryl cyclic 3′:5′-AMP (dbcAMP) or theophylline to normal term placenta and human malignant trophoblast cells in vitro. To understand better the specificity of this process. malignant trophoblast cultures were incubated with 3′:5′-cyclic AMP (cAMP) derivatives, prostaglandins and other agents for 1 to 3 days, and the secretion of radioimmuno-assayable hCG was measured. Whereas dbcAMP was the most potent agent in stimulating secretio of hCG, the N6- and O2′-monobutyryl derivatives of cAMP and phosphodiesterase inhibitors (theophylline, papaverine, 3-isobutyl-1-methylxanthine) also increased the secretion of the hormone. A slight increase in hCG secretion was observed following addition of adenine. By contrast, butyrate, cAMP, cyclic 3′:5′-GMP (cGMP), dbcBMP, 5′-AMP, adenosine, L-epinephrine and prostaglandins E1, E2, F and F were ineffective. Particulate fractions from sonicates of malignant trophoblast cultures contained adenylate cyclase activity which was stimulated more than 10-fold by NaF, but not by either catecholamines or prostaglandins. The relatively specific stimulation of hCG secretion suggested that a regulatory process involving cAMP may have physiological significance in the trophoblast. This investigation was supported by Grant Nos. CA14232 and CA16539 awarded by the National Cancer Institute, DHEW.  相似文献   

9.
10.
Ovine luteal tissue contains two distinct steroidogenic cell types, small (8-20 microns) and large (greater than 20 microns), which differ based on morphological and biochemical criteria. Unstimulated small cells secrete low levels of progesterone, respond to LH or dibutyryl cAMP (dbcAMP) with enhanced secretion of progesterone, and contain most of the receptors for LH. The unstimulated large cells, conversely, secrete high levels of progesterone, have few, if any, receptors for LH, and do not respond to LH or dbcAMP with increased progesterone secretion. The lack of response to dbcAMP by large cells was investigated. Large cells incubated in the presence of cholesterol, ram serum, or 25-hydroxycholesterol did not demonstrate substrate limitation. Hormone-independent stimulation of adenylate cyclase by cholera toxin or forskolin resulted in increased adenylate cyclase activities (P less than 0.01), cAMP accumulation (P less than 0.05), and the binding of endogenous cAMP (P less than 0.05) by type I cAMP-dependent protein kinase in both small and large cells. These treatments were accompanied by enhanced secretion of progesterone (P less than 0.05) in small cells. In contrast, large cells did not respond with an increase in progesterone secretion under these conditions. These observations suggest that the high rate of secretion of progesterone in unstimulated large cells is not regulated by cAMP.  相似文献   

11.
Gossypolone, a proposed major metabolite of gossypol, was synthesized and investigated for its effect on progesterone synthesis in cultured bovine luteal cells. Gossypolone inhibited human chorionic gonadotropin(hCG)-stimulated progesterone secretion, reduced substrate-enhanced conversions of 25-hydroxycholesterol to pregnenolone and of pregnenolone to progesterone in a dose-dependent fashion. These findings indicate that gossypolone inhibits not only 3β-hydroxysteroid dehydrogenase (3β-HSD) activity, as gossypol does, but also side-chain cleavage enzyme complex (cytochrome P450scc activity. However, the two compounds appear to have a similar potency in inhibiting progesterone secretion. Both gossypolone and gossypol (8.5 μM) induced morphological changes in cellular organelles.  相似文献   

12.
Explants from term human placentas were maintained in culture with daily changes of medium. Daily output of PGF2 alpha and PGFM1 decreased during the course of the incubation. Addition of 4 micrograms/ml DHEAS or 67 micrograms/ml LDL cholesterol had no effect on output of PGF2 alpha or PGFM. Addition of 1.6, 3.2, or 6.4 micrograms/ml of LHRH to the culture plates had no effect on output of PGFM or PGF2 alpha, but LHRH increased hCG output. Dibutyryl cAMP (1mM, 2mM, and 4 mM) increased output of PGF2 alpha, PGFM, and hCG. Aromatase inhibitor decreased hCG output, but it was without effect on output of PGF2 alpha, or PGFM, Significant correlations were demonstrated between progesterone, PGFM, PGF2 alpha, and hCG, suggesting that PGF2 alpha originates in the syncytiotrophoblast cell. The ability of LHRH to stimulate output of hCG but not PGF2 alpha while dbcAMP stimulated both suggests that either PGF2 alpha and hCG arise in different cells or that LHRH does not act through cAMP.  相似文献   

13.
酪氨酸对人离体滋养层细胞孕酮与hCG分泌的影响   总被引:1,自引:1,他引:0  
杨雪松  杨旭 《生理学报》1989,41(2):209-214
本文观察三种剂量(2×10~(-5)mol/L,2×10~(-4)mol/L和2×10~(-3)mol/L)的酪氮酸对离体培养的滋养层细胞孕酮及hCG分泌的影响,并对其抑制效应的机理作了初步探讨。实验结果表明,三种剂量的酪氨酸均可抑制滋养层细胞孕酮分泌(P<0.01),但是,在孕酮分泌受酪氨酸抑制的同时,未见对hCG分泌发生影响(P>0.05),进一步观察了酪氨酸对滋养层细胞3β-羟甾脱氢酶活性的影响,结果表明,酪氨酸能显著抑制3β-羟甾脱氢酶活性,提示酪氨酸对滋养层细胞孕酮生成的抑制作用与抑制3β-羟甾脱氢酶活性有关。  相似文献   

14.
In vitro luteinization of bovine granulosa (LGC) and theca (LTC) cells was achieved by culturing cells with forskolin (10 microM) and insulin (2 micrograms/ml) for 9 days. This treatment induced the presence of cytochrome P450scc and adrenodoxin in both cell types, but to substantially higher levels in LGC than in LTC. Forskolin dose-dependently stimulated the secretion of progesterone and cAMP after 3 h of incubation in both cell types although LGC were less sensitive to this stimulation than were LTC. Only LTC were responsive to LH, in accordance with their higher LH/hCG binding capacity. Both prostaglandin F2 alpha (PGF2 alpha) and phorbol 12-myristate 13-acetate (TPA) increased progesterone production during 3 h incubation of LGC and LTC, and treatment with staurosporine (a protein kinase C inhibitor) reversed this effect. Neither TPA nor PGF2 alpha alone affected cAMP levels but each acted synergistically with forskolin to increase cAMP accumulation. These results indicate that 1) elevated progesterone output from LGC is related to steroidogenic enzyme level; 2) bovine LH (up to 100 ng/ml) does not provoke a response in LGC due to their low LH/hCG binding capacity; 3) cAMP-protein kinase A and protein kinase C pathways are both involved in progesterone production by LGC and LTC, possibly by enhancing cholesterol transport.  相似文献   

15.
Previous studies have shown that digoxin decreases testosterone secretion in testicular interstitial cells. However, the effect of digoxin on progesterone secretion in luteal cells is unclear. Progesterone is known as an endogenous digoxin-like hormone (EDLH). This study investigates how digitalis affected progesterone production and whether progesterone antagonized the effects of digitalis. Digoxin or digitoxin, but not ouabain, decreased the basal and human chorionic gonadotropin (hCG)-stimulated progesterone secretion as well as the activity of cytochrome P450 side chain cleavage enzyme (P450scc) in luteal cells. 8-Br-cAMP and forskolin did not affect the reduction. Neither the amount of P450scc, the amount of steroidogenic acute regulatory (StAR) protein, nor the activity of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) was affected by digoxin or digitoxin. Moreover, in testicular interstitial and luteal cells, progesterone partially attenuated the reduction of pregnenolone by digoxin or digitoxin and the progesterone antagonist, RU486, blocked this attenuation. These new findings indicated that (1) digoxin or digitoxin inhibited pregnenolone production by decreasing the activity of P450scc enzyme, but not Na(+)-K(+)-ATPase, resulting in a decrease on progesterone secretion in rat luteal cells, and (2) the inhibitory effect on pregnenolone production by digoxin or digitoxin was reversed partially by progesterone. In conclusion, digoxin or digitoxin decreased progesterone production via the inhibition of pregnenolone by decreasing P450scc activity. Progesterone, an EDLH, could antagonize the effects of digoxin or digitoxin in luteal cells.  相似文献   

16.
The present study examines the effect of prolactin (PRL) and N6-2(1)-O-dibutyryladenosine 3'5'-cyclic monophosphate (cAMP) on low density lipoprotein (LDL) uptake and metabolism by luteinized porcine granulosa cells in culture. Granulosa cells from preovulatory follicles were plated with 1% serum and 1 microgram/mL of insulin for the first 48 h. Following plating (day 3) the cells were cultured in serum-free media with the same dose of insulin. The next day the medium was replaced with serum- and insulin-free medium, and to some cultures 1.23 IU/mL of human chorionic gonadotrophin (hCG) was added. On day 5 the medium was again replaced and graded amounts of PRL (0, 0.03, 0.3, and 3 micrograms/mL) were added. Following 48 h of incubation with PRL, 20 micrograms/mL of 125I-labelled LDL was added to cultures. Surface-bound, internalized, and degraded LDLs were quantitated at 12 h following addition of LDL. To examine the effect of cAMP on LDL metabolism, the cells were exposed for 24 h to cAMP (3mM) on day 6 of culture. PRL had a stimulatory effect on LDL degradation by luteinized granulosa cells. Pre-exposure of cells to hCG augmented the stimulatory effect of PRL. Addition of cAMP also enhanced LDL degradation by luteinized granulosa cells. Both PRL and cAMP increased surface binding of LDL in cells pre-exposed to hCG, but there was no effect on internalization. The increase in cell surface binding of LDL with PRL and cAMP was less than their effect on LDL degradation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The experiments described here were conducted to examine regulation of cytochrome P-450 side-chain cleavage (SCC) mRNA accumulation in porcine granulosa cells isolated from small (1-4-mm) and medium (5-6-mm) follicles. Granulosa cells were cultured under the following conditions: 1) for 48 h or 96 h with 0, 50, or 200 ng/ml porcine FSH; 2) for 96 h with 200 ng/ml FSH and aminoglutethimide (100 microM); and 3) for 96 h with forskolin (100 microM). Total RNA was extracted and examined by Northern and dot-blot hybridization analysis, and culture media were assayed for progesterone concentration. Northern blot analysis revealed a single band approximately 2.1 kb in size. Accumulation of SCC mRNA by granulosa cells was both FSH dose- and culture time-dependent (p less than 0.05) with maximal increases approximately 4.5 times control levels. Aminoglutethimide reduced progesterone production by about 80% while having no effect on granulosa cell accumulation of SCC mRNA compared to cells stimulated with 200 ng/ml of FSH. Forskolin-treated cells produced significantly more progesterone than did cells treated with FSH, but accumulation of SCC mRNA was similar. In response to FSH, concentration of SCC mRNA did not vary with follicle size, but granulosa cells from small follicles produced significantly more progesterone than did those from medium follicles. These results demonstrate that concentration of SCC mRNA in cultured porcine granulosa cells is FSH dose-dependent, does not vary significantly in cells from small- and medium-sized follicles, and is correlated with progesterone production, but may not parallel progesterone secretion. This last observation indicates that control at sites other than SCC mRNA can affect progesterone production.  相似文献   

18.
F L Bellino  J O Lobo 《Steroids》1987,50(1-3):73-87
Estrogen synthetase (aromatase) is present in large amounts in human term placenta. However, the localization of aromatase within the cellular structure of the placental villus is obscure. By immunocytochemical techniques using antibodies that separately recognize each component of the aromatase cytochrome P-450 enzyme system, the fraction of term placental trophoblast cells in primary culture expressing each aromatase component antigen increased from 20% in fresh mononucleated cells to about 65% for multinucleated giant cells after 72 h. In contrast, about 80% of human choriocarcinoma cells in continuous culture (JAr line) expressed each aromatase component antigen. The fraction of trophoblast cells in primary culture containing human chorionic gonadotropin increased from about 14% in fresh mononucleated cells to about 45% after 72 h and was about 30% in the choriocarcinoma cells. Fibroblast cells in culture, derived from trypsin-treated placental villi, contained aromatase activity, albeit much lower than term placental trophoblast cells. Aromatase specific activity in these placental fibroblasts did not change following growth with dibutyryl cAMP plus theophylline for 72 h.  相似文献   

19.
We have previously shown that 25-hydroxycholesterol (25-OHC) treated CHO-K1 cells could be used as a model to investigate the signaling pathway of apoptosis induced by oxidized LDL in vascular cells. In the present study, we examine the execution phase of the apoptotic pathway in CHO-K1 cell death induced by 25-OHC. Oxysterol-induced apoptosis in CHO-K1 was accompanied by caspase activation and was preceded by mitochondrial cytochrome c release. The addition of a competitive caspase-3 inhibitor, Ac-DEVD-CHO, prevented 25-OHC-induced apoptotic cell death. Furthermore, immunoblot analysis showed that 25-OHC treatment induced the degradation of poly(ADP-ribose) polymerase (PARP)-a substrate for caspase 3 and a key enzyme involved in genome surveillance and DNA repair. Thus, we could demonstrate in CHO-K1 cells that 25-OHC activates the apoptotic machinery through induction of the release of cytochrome c from mitochodria into the cytosol and activation of a typical caspase cascade.  相似文献   

20.
We investigated the regulation of synthesis of low density lipoprotein (LDL) receptor in cultured luteinized human granulosa cells using a monoclonal antibody recognizing the human LDL receptor (IgG-C7). Cells cultured under serum-free conditions were treated with human chorionic gonadotropin (hCG) or 8-bromo-cAMP alone or in combination with aminoglutethimide (to block conversion of cholesterol to steroid hormones) and 5-cholesten-3 beta, 25-diol (25-hydroxycholesterol, a potent suppressor of LDL receptor expression in human fibroblasts) and pulse-labeled with [35S]methionine. A labeled protein immunoisolated with IgG-C7 was identified as the mature LDL receptor in 7.5% sodium dodecyl sulfate-polyacrylamide gels on the basis of an apparent molecular mass of 160 kDa, absence of the protein from immunoisolates prepared with a monoclonal antibody against an irrelevant antigen, and an apparent decrease in molecular weight of the mature receptor upon treatment with neuraminidase or electrophoresis under nonreducing conditions. hCG and 8-bromo-cAMP consistently increased the incorporation of radioactivity into the mature LDL receptor by 2-6-fold. The effect of hCG on LDL receptor synthesis was observed with as little as 10 mIU of hCG/ml and was apparent within 2 h of addition of the hormone. A combination of 25-hydroxycholesterol and aminoglutethimide resulted in a 60% suppression of label incorporation into mature LDL receptor compared to untreated cells. This would suggest some regulation of LDL receptor synthesis by negative feedback of sterol. However, both hCG and 8-bromo-cAMP increased label incorporation into the LDL receptor in the face of these agents. We conclude that in human granulosa cells, hCG, through the intermediacy of cAMP, rapidly increases LDL receptor synthesis by a mechanism which is, at least in part, independent of alterations in cellular cholesterol balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号