首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in the function or density of the m2 muscarinic (mAChR) subtype have been postulated to play an important role in various dementias such as Alzheimer's disease. The ability to image and quantify the m2 mAChR subtype is of importance for a better understanding of the m2 subtype function in various dementias. Z-(R)-1-Azabicyclo[2.2.2]oct-3-y (R)-alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z-(R,R)-IQNP) has demonstrated significant uptake in cerebral regions that contain a high concentration of m2 mAChR subtype in addition to heart tissue. The present study was undertaken to determine if the uptake of Z-(R,R)-IQNP in these regions is a receptor mediated process and to identify the radiospecies responsible for binding at the receptor site. A blocking study demonstrated cerebral and cardiac levels of activity were significantly reduced by pretreatment (2-3 mg/kg) of (R)-3-quinuclidinyl benzilate, dexetimide and scopolamine, established muscarinic antagonists. A direct comparison of the cerebral and cardiac uptake of [I-125]-Z-(R,R)-IQNP and [I-131]-E-(R,R)-IQNP (high uptake in ml, m4 rich mAChR cerebral regions) demonstrated Z-(R,R)-IQNP localized to a higher degree in cerebral and cardiac regions containing a high concentration of the m2 mAChR subtype as directly compared to E-(R,R)-IQNP. In addition, a study utilizing [I-123]-Z-(R,R)-IQNP, [I-131]-iododexetimide and [I-125]-R-3-quinuclidinyl S-4-iodobenzilate, Z-(R,R)-IQNP demonstrated significantly higher uptake and longer residence time in those regions which contain a high concentration of the m2 receptor subtype. Folch extraction of global brain and heart tissue at various times post injection of [I-125]-Z-(R,R)-IQNP demonstrated that approximately 80% of the activity was extracted in the lipid soluble fraction and identified as the parent ligand by TLC and HPLC analysis. These results demonstrate Z-(R,R)-IQNP has significant uptake, long residence time and high stability in cerebral and cardiac tissues containing high levels of the m2 mAChR subtype. These combined results strongly suggest that Z-(R,R)-IQNP is an attractive ligand for the in vivo imaging and evaluation of m2 rich cerebral and cardiac regions by SPECT.  相似文献   

2.
We have determined the kinetics of dissociation of (R)-3-Quinuclidinyl (R)-4-[125I]Iodobenzilate ((R,R)-[125I]4IQNB) from muscarinic acetylcholine receptor preparations from the cortex, hippocampus, caudate/putamen, thalamus, pons and colliculate bodies. The dissociation curves are well described by a biexponential function and are consistent with subtype selectivity favoring slow dissociation from the M1, M3, and M4 receptors with a 20-fold faster dissociation rate for the M2 receptor. Following intravenous injection, (R,R)-[125I]4IQNB binds to receptor in the rat brain in concentrations which reflect the receptor concentration present in a structure. We determined the extent of radioligand present at two times, 2 and 24 hrs, as an indication of the relative proportions of m-AChR which exhibits rapid vs. slow dissociation of (R,R)-[125I]4IQNB. A good correlation between in vitro and in vivo results suggests that the relative populations of receptor subtypes can be imaged using in vivo pharmacokinetics of (R,R)-[125I]4IQNB.  相似文献   

3.
The binding properties of the 125I-labeled phencyclidine derivative N-[1-(3-[125I]iodophenyl)cyclohexyl]piperidine (3-[125I]iodo-PCP), a new ligand of the N-methyl-D-aspartate (NMDA)-gated ionic channel, were investigated. Association and dissociation kinetic curves of 3-[125I]iodo-PCP with rat brain homogenates were well described by two components. About 32% of the binding was of fast association and fast dissociation, and the remaining binding was of slow association and slow dissociation. Saturation curves of 3-[125I]iodo-PCP also were well described using two binding sites: one of a high affinity (KDH = 15.8 +/- 2.3 nM) and the other of a low affinity (KDL = 250 +/- 40 nM). 3-Iodo-PCP inhibited the binding of 3-[125I]iodo-PCP with inhibition curves that were well fitted by a two-site model. The binding constants (KiH, BmaxH; KiL, BmaxL) so obtained were close to those obtained in saturation experiments. Ligands of NMDA-gated ionic channels also inhibited the binding of 3-[125I]iodo-PCP with two constants, KiH and KiL. There was a very good correlation (r = 0.987) between the affinities of these ligands to bind to NMDA-gated ionic channels and their potencies to inhibit the binding of 3-[125I]iodo-PCP with a high affinity. Moreover, the regional distribution of the high-affinity binding of 3-[125I]-iodo-PCP paralleled that of tritiated N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP). In contrast to that of [3H] TCP, the binding of 3-[125I]iodo-PCP to well-washed rat brain membranes was fast and insensitive to glutamate and glycine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
An inhibitor to the muscarinic acetylcholine receptor (mAChR) was purified from the venom of Crotalus atrox (western diamondback rattlesnake). The inhibitor was found to be a 30-kDa homodimer protein with phospholipase A2 activity. In order to determine the subtype selectivity of the purified inhibitor, the inhibitory effect on the binding of two orthosteric antagonists, [3H]quinuclidinyl benzilate ([3H]QNB) and [3H]N-methylscopolamine methyl chloride ([3H]NMS), to five subtypes of cloned human mAChR was tested. The purified inhibitor reduced the binding of [3H]QNB and/or [3H]NMS to all subtypes of the mAChR while showing the highest inhibitory effect on the M5 subtype. The Kd values of the receptors for the antagonists were increased in the presence of the inhibitor; however, the Bmax values were not changed. The effects of the purified inhibitor on the dissociation of [3H]NMS from the receptors were also investigated. Dissociation of the antagonist was remarkably slowed down by addition of the inhibitor. These findings may suggest an allosteric action of the purified inhibitor. In addition, the present study indicates that the presence of mAChR inhibitors is quite common in snake venoms.  相似文献   

5.
The M1-selective (high affinity for pirenzepine) muscarinic acetylcholine receptor (mAChR) antagonist pirenzepine displaced both N-[3H]methylscopolamine [( 3H]NMS) and [3H]quinuclidinylbenzilate from intact human SK-N-SH neuroblastoma cells with a low affinity (Ki = 869-1,066 nM), a result indicating the predominance of the M2 or M3 (low affinity for pirenzepine) receptor subtype in these cells. Whereas a selective M2 agent, AF-DX 116 [11-2[[2-[(diethylamino)methyl]-1-piperidinyl]- acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) bound to the mAChRs with a very low affinity (Ki = 6.0 microM), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), an agent that binds with high affinity to the M3 subtype, potently inhibited [3H]NMS binding (Ki = 7.2 nM). 4-DAMP was also 1,000-fold more effective than AF-DX 116 at blocking stimulated phosphoinositide (PPI) hydrolysis in these cells. Covalent labeling studies (with [3H]propylbenzilycholine mustard) suggest that the size of the SK-N-SH mAChR (Mr = 81,000-98,000) distinguishes it from the predominant mAChR species in rat cerebral cortex (Mr = 66,000), an M1-enriched tissue. These results provide the first demonstration of a neural M3 mAChR subtype that couples to PPI turnover.  相似文献   

6.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

7.
The distribution and down-regulation of the muscarinic acetylcholine receptor (mAChR) were studied in dissociated cells from right (RCC) and left (LCC) cerebral cortex. For this purpose [3H]quinuclidinyl benzilate (QNB) and [3H]pirenzepine (Pz), two muscarinic antagonists, were used. The mAChR binding sites detected with [3H]QNB were asymmetrically distributed between the two hemispheres, the majority being found in the RCC. Asymmetry was also evident in the distribution of the mAChR subtypes (M1 and M2) detected with [3H]Pz. Under basal conditions the RCC had roughly 50% more M1 subtype than the LCC. The pharmacological and kinetic parameters were similar for both antagonists in RCC and LCC, indicating that the observed lateralization was due to a different density of the receptor rather than to different kinetics of binding of the two radioligands. After sustained stimulation with the agonist carbamoylcholine, the receptor sites detected with [3H]Pz, i.e. the M1 subtype of mAChR, decreased at a higher rate in the RCC (44%) than in the LCC (25% of controls), demonstrating that the down-regulation process is more active in the right than in the left cortex, and thus implying that there is better coupling between the stimulated mAChR and its effector system in the former.  相似文献   

8.
9.
We have prepared a radioiodinated ligand which binds with high affinity to the muscarinic acetylcholine receptor (m-AChR). A derivative of 3-quinuclidinyl benzilate, [125I] labeled (R) 1-aza-bicyclo(2.2.2)oct-3-yl (R,S)-alpha-hydroxy-alpha-(4-[125I]iodophenyl)phenyl acetate (4- IQNB ) exhibits an affinity for the m-AChR from corpus striatum higher than that of (R) [3H] QNB. Additionally, [125I] 4- IQNB exhibits receptor selectivity for the M1 receptor since the affinity for the receptor from dog and rat heart is lower than that using dog or rat corpus striatum.  相似文献   

10.
A family of five subtypes of muscarinic acetylcholine receptors (mAChR) has been identified based on their molecular structures and second signal transduction pathways. In the present study, we examined the antagonist binding profiles of 9 muscarinic antagonists (atropine, 4-DAMP, pirenzepine, oxybutynin, tiquizium, timepidium, propiverine, darifenacin and zamifenacin) for human muscarinic acetylcholine receptor subtypes (m1, m2, m3, m4 and m5) produced by using a baculovirus infection system in Sf9 insect cells, and rat tissue membrane preparations (heart and submandibular gland). In a scopolamine methyl chloride [N-methyl-3H]- ([3H]NMS) binding assay, pirenzepine and timepidium displayed the highest affinities for the m1 and m2 subtypes, respectively, and both zamifenacin and darifenacin had the highest affinities for the m3 subtype, although the selectivities among the five subtypes were less than 10-fold. Propiverine showed a slightly higher affinity for the m5 subtype, whereas none of the drugs used in this study was uniquely selective for the m4 subtype. The binding affinities of muscarinic antagonists for rat heart and submandibular gland strong correlated with those for human cloned m2 and m3 subtypes, respectively. These data suggest that [3H]NMS binding studies using rat heart and submandibular gland might be useful methods which predict the affinities of test drugs for human muscarinic M2 and M3 receptor subtypes.  相似文献   

11.
G Simon  J Filep  T Zelles 《Life sciences》1990,47(22):2021-2025
Alpha adrenergic agonists and antagonists as clonidine, guanfacine, yohimbine, phenylephrine and prazosin inhibited the [3H]-QNB binding to rat brain cortex muscarinic acetylcholine receptor (mAChR, M-1 subtype), heart (M-2 subtype) and parotid gland homogenate (M-3 subtype) in a dose-dependent competitive fashion. Ki values were between 10(-6) and 10(-3) M. Hill coefficients were about 1. No correlation was found between mAChR inhibiting capacity of these drugs and their activity on alpha adrenergic receptors. In contrast, other transmitters, as dopamine, GABA, glutamic acid, histamine, serotonin, isoproterenol and platelet activating factor (PAF) did not affect the QNB binding.  相似文献   

12.
Polymorphism of estrogen (ER) and progestin receptors (PR) was analyzed simultaneously using high performance hydrophobic interaction chromatography (HPHIC). HPHIC was used previously to characterize four ER isoforms [Hyder et al., J. Chromat. 397 (1987) 251] based on retention times on Synchropak propyl (100 x 6 mm) HPLC columns (Synchrom, Inc.). ER and PR were prepared from human breast cancer. ER was labeled with 3 nM of either [3H]estradiol-17 beta ([3H]E) or [125I]iodoestradiol-17 beta ([125I]E) while PR was associated with 5 nM of either [3H]R5020 ([3H]R) or [125I]iodovinylnortestosterone ([125I]V). ER was resolved by HPHIC into isoforms MI (Rt = 11 min), I(Rt = 16 min), and II (Rt = 24 min). Isoforms I and II each accounted for ca 45% of specific binding. PR separated into isoforms MI (Rt = 14 min) and I (Rt = 21 min, 80% of specific binding) when eluted with the same gradient used for ER chromatography. Upon inclusion of 10 mM molybdate ER resolved into isoforms MI and MII (Rt = 16 min) and PR into isoforms MI and I (here however isoform MI represented 80-95% of specific binding). Elution patterns were preserved with different batches of stationary phase suggesting the integrity of the isoform distribution. HPLC profiles of ER isoforms labeled with earlier [125I]E or [3H]E were identical as were PR isoform profiles labeled with either [3H]R or [125I]V. Pairs of 125I- and 3H-labeled ligands were used in either combination to monitor ER and PR profiles simultaneously. Isoforms analyzed in 50 biopsies gave reproducible retention times, however the ratio between I and II for ER and MI and I for PR varied. This method allows rapid, simultaneous monitoring of the chromatographic behavior of ER and PR isoforms or other associating proteins or nucleotides. One may now better elucidate their interrelationship as it relates to the hormone-response mechanism.  相似文献   

13.
The in vitro binding properties of the [125I] labeled benzamide (S(-)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-hydroxy-3-iodo-6-methoxy- benzamide, IBZM) were determined in bovine and mouse caudate membrane homogenates and by autoradiography of mouse brain slices. [125I]-IBZM binding is saturable and reversible with a Bmax of 373 +/- 51 fmol/mg protein and a Kd of 3.1 +/- 0.62 nM (mean +/- SD, Scatchard analyses) and 0.56 nM as calculated by association and dissociation time constants. In competition experiments, Ki values for the D-2 antagonists YM-09151-2 and spiperone are 4 orders of magnitude lower than the Ki value for the D-1 antagonist SCH-23390 and S(-)-IBZM is ten-fold more potent than R(+)-IBZM. [125I]-IBZM has a low affinity for serotonin S-2 and for alpha receptors. Therefore, it is a highly selective ligand for dopamine D-2 receptors. Autoradiographic images of brain sections incubated with [125I]-IBZM show the dopamine D-2 receptors of the striatum, nucleus accumbens and olfactory tubercle with a high ratio of specific to nonspecific binding. Thus, S(-)-IBZM, when labeled with [123I], may be useful for in vivo imaging of dopamine D-2 receptors by single photon emission computerized tomography (SPECT).  相似文献   

14.
15.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   

16.
Monoclonal antibodies raised against the nicotinic acetylcholine receptor of Electrophorus electricus electroplaque have been used as probes to characterize putative nicotinic acetylcholine receptors in goldfish brain. One monoclonal antibody (mAb), mAb 47, recognized a protein which binds both (-)-[3H]nicotine and 125I-alpha-bungarotoxin with high affinity. Another monoclonal antibody (mAb 172) recognized a protein which binds (-)-[3H]nicotine but not 125I-alpha-bungarotoxin. Both antibodies precipitated a protein(s) (biosynthetically labeled with [35S]methionine) in the absence, but not in the presence, of excess purified nicotinic acetylcholine receptor from Torpedo nobiliana. The dilution of mAb 47 that precipitated half of the maximum amount of 125I-alpha-bungarotoxin binding protein was the same as that which precipitated half of the maximum amount of (-)-[3H]nicotine binding activity. When used in combination, the two antibodies precipitated more (-)-[3H]nicotine radioactivity than either antibody alone. The (-)-[3H]nicotine and 125I-alpha-bungarotoxin binding component-mAb complexes were characterized by sucrose density centrifugation. In the presence of either mAb 172 or 47, the (-)-[3H] nicotine binding component migrated further into the gradient, but only mAb 47 shifted the 125I-alpha-bungarotoxin peak. Incubation of solubilized brain extract with alpha-bungarotoxin-coupled Sepharose reduced the amount of (-)-[3H]nicotine radioactivity precipitated by mAb 47 but not by mAb 172. These data suggest that the antibodies may recognize distinct subtypes of (-)-nicotine binding sites in goldfish brain, one subtype which binds both 125I-alpha-bungarotoxin and (-)-[3H]nicotine and a second subtype which binds only (-)-[3H] nicotine.  相似文献   

17.
Three photoactive derivatives of the 7-methylguanosine-containing cap of eukaryotic mRNA were used to investigate protein synthesis initiation factor eIF-4E from human erythrocytes and rabbit reticulocytes. Sensitive and specific labeling of eIF-4E was observed with the previously described probe, [gamma-32P]-gamma-[[(4-benzoylphenyl)methyl]amido]-7-methyl-GTP [Blaas et al. (1982) Virology 116, 339; abbreviated [32P]BPM]. A second probe was synthesized that was an azidophenyltyrosine derivative of m7GTP [( 125I]APTM), the monoanhydride of m7GDP with [125I]-N-(4-azidophenyl)-2-(phosphoramido)-3-(4-hydroxy-3-iodop hen yl) propionamide. This probe allowed rapid and quantitative introduction of radioactivity in the last rather than the first step of synthesis and placed the radioactive label on the protein-proximal side of the weak P-N bond. A dissociation constant of 6.9 microM was determined for [125I]APTM, which is comparable to the published values for m7GTP. m7GTP and APTM were equally effective as competitive inhibitors of eIF-4E labeling with [125I]APTM. Like [32P]BPM, [125I]APTM labeled both the full-length (25 kDa) polypeptide and a 16-kDa degradation product, designated eIF-4E*, with labeling occurring in proportion to the amounts of each polypeptide present. A third probe, an azidophenylglycine derivative of m7GTP [( 32P]APGM), the monoanhydride of m7GDP with [32P]-N-(4-azidophenyl)-2-(phosphoramido)acetamide, was also synthesized and shown to label eIF-4E specifically. Unlike [32P]BPM and [125I]APTM, however, [32P]APGM labeled eIF-4E* approximately 4-fold more readily than intact eIF-4E. Tryptic and CNBr cleavage suggested that eIF-4E* consists of a protease-resistant core of eIF-4E that retains the cap-binding site and consists of approximately residues 47-182.  相似文献   

18.
G N Turner  P Nobis    W C Dewey 《Biophysical journal》1976,16(9):1003-1012
The DNA in Chinese hamster cells was labeled first for 3 h with [3H]TdR and then for 3 h with [125I]UdR. Chromatin was extracted, frozen, and stored at -30 degrees C until 1.0 X 10(17) and 1.25 X 10(17) disintegrations/g of labeled DNA occurred for 125I and 3H respectively. Velocity sedimentation of chromatin (DNA with associated chromosomal proteins) in neutral sucrose gradients indicated that the localized energy from the 125I disintegrations, which gave about 1 double-strand break/disintegration plus an additional 1.3 single strand breaks, selectively fragmented the [125I] chromatin into pieces smaller than the [3H] chromatin. In other words, 125I disintegrations caused much more localized damage in the chromatin labeled with 125I than in the chromatin labeled with 3H, and fragments induced in DNA by 125I disintegrations were not held together by the associated chromosomal proteins. Use of this 125I technique for studying chromosomal proteins associated with different regions in the cellular DNA is discussed. For these studies, the number of disintegrations required for fragmenting DNA molecules of different sizes is illustrated.  相似文献   

19.
Tunicamycin, a potent inhibitor of protein glycosylation, was used to study the role of protein glycosylation in the regulation of muscarinic acetylcholine receptor (mAChR) number in cultures of N1E-115, a murine neuroblastoma cell line. At a concentration of 0.35 microgram/ml, tunicamycin inhibited macromolecular incorporation of [3H]mannose by 75-80%, whereas incorporation of [3H]leucine was reduced by only 10%. Treatment with tunicamycin caused a 30% decrease in total membrane mAChR number within 48 h as determined by a filter-binding assay using [3H]quinuclidinyl benzilate ([3H]QNB), a highly specific muscarinic antagonist. Tunicamycin also inhibited the recovery of total membrane mAChR by 70% following carbachol-induced down-regulation. The rate of mAChR degradation (control t1/2 12-14 h) was unaffected by incubation with tunicamycin. Intact cell binding studies using [3H]QNB (a membrane-permeable ligand) to measure total cellular (internal plus cell surface) mAChR and [3H]N-methylscopolamine ([3H]NMS, a membrane-impermeable ligand) to measure cell surface mAChR were conducted to determine whether tunicamycin selectively depleted cell surface mAChR. With 12 h of treatment with tunicamycin, cell surface mAChR number declined by 35%, whereas total cellular mAChR fell by only 10%. The ratio of cell surface receptor to total receptor decreased by 45% after 24 h. These results indicate that protein glycosylation is required for the maintenance of cell surface mAChR number. Incubation with tunicamycin causes a selective depletion of cell surface mAChR, implying that protein glycosylation plays a critical role in transport and/or incorporation of mAChR into the plasma membrane.  相似文献   

20.
Muscarinic acetylcholine receptors (mAChR) were purified from rat brain and labeled either with the site-directed affinity label [3H]propylbenzilylcholine mustard (PrBCM) or with the sulfhydryl-specific label [3H]N-ethylmaleimide (NEM), using a protocol designed to give selective incorporation of the label into disulfide-bonded cysteines. m1 mAChRs were purified from CHO-K1 cells stably expressing the cloned receptor sequence and labeled with [3H]PrBCM. The labeled receptors were cleaved with the lysine-specific protease Lys-C and, after fractionation of the products, subcleaved with cyanogen bromide. Two major CNBr cleavage products were found with a molecular mass of approximately 3.9 and approximately 2.4 kDa, labeled either by [3H]PrBCM or [3H]NEM. The results obtained from CNBr cleavage of purified forebrain receptors were consistent with those obtained from the purified cloned m1 mAChR. Edman degradation was applied to the CNBr peptides. The results were compatible with the attachment of the [3H]PrBCM label to a conserved aspartic acid residue in transmembrane helix 3 of the mAChR (corresponding to Asp-105, m1 sequence) and of [3H]NEM to a conserved cysteine residue (corresponding to Cys-98, m1 sequence). These results support the hypothesis that the cysteine residue participates in a disulfide bond on the extracellular surface of the mAChRs and related G-protein-coupled receptors, while the aspartic acid residue is involved in binding the positively charged headgroup of muscarinic antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号