首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background. It is still a point of controversy whether Helicobacter pylori‐infected patients are more likely to develop mucosal damage while taking NSADIs. Selective cyclooxygenase (COX‐2) inhibitors may be associated with less severe gastric mucosal damage than conventional NSAIDs, but this association is undefined in H. pylori‐induced gastritis. The aim of this study was to evaluate the effects of selective COX‐2 and nonselective NSAIDs on H. pylori‐induced gastritis. Methods. After intragastric administration of indomethacin, NS‐398 or vehicle alone, once daily for 5 days in H. pylori‐infected and uninfected Mongolian gerbils, we evaluated gastric mucosal damage, inflammatory cell infiltration and prostaglandin E2 (PGE2) concentration. We investigated whether H. pylori infection induced the COX‐2 expression. Results. In H. pylori‐uninfected groups, the indomethacin‐treated group showed the highest mucosal damage score and the lowest PGE2 concentration. There was no difference in mucosal damage scores and PGE2 concentration between NS‐398 and vehicle‐alone treated group. In H. pylori‐infected groups, there was no difference in mucosal damage scores, irrespective of the type of drugs administered. The indomethacin‐treated group showed the lowest PGE2 concentration, similar to that of the NS‐398 and vehicle‐alone treated groups, both without H. pylori infection. Gastric neutrophil and monocyte infiltration scores were higher in H. pylori‐infected groups than in uninfected groups. However, there was no difference in these scores according to the type of drugs administered, within H. pylori‐infected or uninfected groups. COX‐2 protein expression was observed in H. pylori‐infected Mongolian gerbils but not in uninfected ones. Conclusions. Our animal study showed that H. pylori infection induced COX‐2 expression and increased prostaglandin concentration. Administration of NSAIDs decreased the prostaglandin concentration, but did not increase mucosal damage in H. pylori‐induced gastritis. Selective COX‐2 inhibitors, instead of conventional NSIADs, had no beneficial effect on preventing mucosal damage in H. pylori‐induced gastritis.  相似文献   

3.
Background. Helicobacter pylori a primary cause of gastritis and peptic ulcer disease, is associated with increased production of reactive oxygen species within the gastric mucosa. Metallothionein (MT), a low‐molecular‐weight, cysteine‐rich, metal‐binding ligand, has been shown to sequester reactive oxygen species and reduce tissue damage. This study investigates the role of MT in H. pylori‐induced gastritis in mice. Materials and Methods. Control (MT+/+) and MT‐null (MT–/–) mice were inoculated with either 1 × 108H. pylori or H. felis, and were infected for 4, 8 and 16 weeks or 8 weeks, respectively. H. pylori load was determined by culture. Myloperoxidase activity and MT levels were also determined. Results. The stomachs of H. felis‐infected mice were more severely inflamed than those of H. pylori‐infected mice. H. felis‐induced gastritis was more severe (p = .003) in MT–/– than in MT+/+ mice. MT–/– mice also had higher (60%; p < .05) H. pylori loads than MT+/+ mice 4 weeks after infection but not 8 or 16 weeks after infection. Myloperoxidase activity with H. pylori was similar between MT+/+ and MT–/– mice. Thirty‐three per cent greater (p < .05) myloperoxidase activity was observed in MT–/– than in MT+/+ mice infected with H. felis. In MT+/+ mice infected with H. pylori, liver MT was increased by 33 and 39% (p < .05) at 8 and 16 weeks, respectively, whereas gastric MT increased by 46% (p < .05) at 4 weeks and declined to baseline levels at 8 and 16 weeks. Conclusions. Mice lacking MT are more susceptible to H. pylori colonization and gastric inflammation, indicating that MT may be protective against H. pylori‐induced gastritis.  相似文献   

4.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

5.
Infection with Helicobacter pylori leads to gastritis, peptic ulcers and gastric cancer. Moreover, when the gastric mucosa is exposed to H. pylori, gastric mucosal inflammatory cytokine interleukin‐8 (Il‐8) and reactive oxygen species increase. Anthocyanins have anti‐oxidative, antibacterial and anti‐inflammatory properties. However, the effect of anthocyanins in H. pylori‐infected cells is not yet clear. In this study, therefore, the effect of anthocyanins on H. pylori‐infected human gastric epithelial cells was examined. AGS cells were pretreated with anthocyanins for 24 hrs followed by H. pylori 26695 infection for up to 24 hrs. Cell viability and ROS production were examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide and 2′,7′–dichlorofluorescein diacetate assay, respectively. Western blot analyses and RT‐PCR were performed to assess gene and protein expression, respectively. IL‐8 secretion in AGS cells was measured by ELISA. It was found that anthocyanins decrease H. pylori‐induced ROS enhancement. Anthocyanins also inhibited phosphorylation of mitogen‐activated protein kinases, translocation of nuclear factor‐kappa B and Iκβα degradation. Furthermore anthocyanins inhibited H. pylori‐induced inducible nitric oxide synthases and cyclooxygenase‐2 mRNA expression and inhibited IL‐8 production by 45.8%. Based on the above findings, anthocyanins might have an anti‐inflammatory effect in H. pylori‐infected gastric epithelial cells.  相似文献   

6.
7.
Background. Gastric carcinoids are strongly associated with chronic atrophic gastritis A, and it is suggested that hypergastrinemia plays a critical role in development of gastric carcinoids. Since Helicobacter pylori infection causes hypergastrinemia, it is held that H. pylori infection produces gastric carcinoids. We followed the histological changes of H. pylori‐infected stomachs of Mongolian gerbils for a long time. Materials and Methods. Five‐week‐old‐male Mongolian gerbils were infected with H. pylori ATCC 43504 with cagA gene, expressing vacuolating cytotoxin. Determination of the serum gastrin and histopathological examination of the stomach at 6, 12, 18, and 24 months after H. pylori inoculation was studied and compared with uninfected animals . Results In infected animals, the gastric carcinomas appeared 18 and 24 months after infection. Endocrine cell dysplasias and carcinoids with marked atrophic gastritis of the oxyntic mucosa were observed in the infected animals 24 months after H. pylori inoculation. The serum gastrin level in the infected group increased from an average of 86.2 pg/ml at the beginning of the study to an average of 498 pg/ml and 989 pg/ml at 18 and 24 months after infection, respectively. These changes in the serum gastrin levels were significant compared with uninfected controls that showed no changes. Conclusions. H. pylori infection caused not only gastric carcinomas but also enterochromaffin‐like cell tumors in Mongolian gerbils, due to hypergastrinemia. This model is thought to be useful to study the relationship between hypergastrinemia and gastric carcinoids.  相似文献   

8.
Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL‐33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL‐33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide‐Binding Oligomerisation Domain‐Containing Protein 1 (NOD1) and its adaptor protein receptor‐interacting serine–threonine Kinase 2, to promote production of both full‐length and processed IL‐33 in gastric epithelial cells. Furthermore, IL‐33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1+/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL‐33 and splenic IL‐13 responses, but decreased IFN‐γ responses, when compared with Nod1?/? animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL‐33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation.  相似文献   

9.
10.
Kabir S 《Helicobacter》2011,16(1):1-8
Background: Helicobacter pylori infection is regarded as the major cause of various gastric diseases and induces the production of several cytokines including interleukin‐17 (IL‐17) recently recognized as an important player in the mammalian immune system. Objective: This review deals with the role of IL‐17 on the H. pylori‐induced infection and immunity in humans and experimental animals. Results: H. pylori infection increases IL‐17 in the gastric mucosa of humans and experimental animals. In humans, IL‐17 induces the secretion of IL‐8 by activating the ERK 1/2 MAP kinase pathway and the released IL‐8 attracts neutrophils promoting inflammation. IL‐23 is increased in patients with H. pylori‐related gastritis and regulates IL‐17 secretion via STAT3 pathway. Studies in H. pylori‐infected mice indicate that IL‐17 is primarily associated with gastric inflammation. The early events in the immune response of immunized and challenged mice include the recruitment of T cells and the production of IL‐17. Neutrophil attracting chemokines are released, and the bacterial load is considerably reduced. IL‐17 plays a dual role in infection and vaccination. In infection, T regulatory cells (Tregs) suppress the inflammatory reaction driven by IL‐17 thereby favoring bacterial persistence. Immunization produces Helicobacter‐specific memory T‐helper cells that can possibly alter the ratio between T‐helper 17 and Treg responses so that the IL‐17‐driven inflammatory reaction can overcome the Treg response leading to bacterial clearance. Conclusion: IL‐17 plays an important role in H. pylori‐related gastritis and in the reduction of Helicobacter infection in mice following immunization.  相似文献   

11.
Background. The recently reported OMNIUM and ASTRONAUT NSAID ulcer prevention trials using omeprazole to prevent endoscopic ulcer recurrence among chronic NSAID users suggested superiority over misoprostol or ranitidine. Aim. To test the hypothesis the results from the OMNIUM and ASTRONAUT studies would not be generalizible as ulcer healing and ulcer recurrence would differ in relation to Helicobacter pylori status. Methods. The data regarding H. pylori status were made available by AstraZenca allowing separate analysis of the outcome of those with NASID ulcers (i.e. without H. pylori infection) and those NSAID use was complicated with the presence of an active H. pylori infection. Results. Reanalysis confirmed that omeprazole was superior to placebo for the prevention of ulcer recurrence in chronic NSAID users. However, overall omeprazole was not significantly better than the subtherapeutic dose (400 µg/day) of misoprostol (14.5% vs. 19.6%, respectively, p = .93); 400 µg of misoprostol was actually superior to omeprazole for the prevention of gastric ulcers among those NSAID ulcers (8.2% vs. 16.6% for misoprostol and omeprazole, respectively; p < .05). Omeprazole was also not statistically different from misoprostol for gastric ulcer prevention in those whose NSAID use was complicated by an active H. pylori infection. Omeprazole was not significantly different from 300 mg of ranitidine for the prevention of NSAID gastric ulcers (14.6% vs. 11.6%, respectively, p = .56). Duodenal ulcers were over represented among H. pylori infected NSAID users and duodenal ulcer prevention was more sensitive to acid suppression than gastric ulcer. Conclusion. The OMNIUM and ASTRONAUT trials may have provided an unrealistic sense of security regarding the effectiveness of omeprazole for protection against ulcer recurrence in chronic NSAID users.  相似文献   

12.
Background: Helicobacter pylori (H. pylori) is the major cause of chronic active gastritis and peptic ulcer disease. Recent studies have shown that H. pylori produces various cytokines that are related to neutrophil or mononuclear cell accumulation. Interleukin‐17 (IL‐17) is the founding member of an emerging family of inflammatory cytokines whose biological activities remain incompletely defined. In this study, the contributions of IL‐17 to the induction of gastric inflammation and to the protection from H. pylori infection were investigated using IL‐17 gene‐knockout (IL‐17?/–) mice. Materials and Methods: IL‐17?/–and wild‐type C57BL/6 mice were challenged with H. pylori CPY2052 (2 × 108 CFU/mL) and the histological and microbiological evaluation were carried out at specified times. IL‐17 and myeloperoxidase (MPO) protein levels in tissues were assayed in duplicate using ELISA kits. Results: In wild‐type mice, IL‐17 was undetected at baseline; however, the protein expression of IL‐17 was induced after infection with H. pylori. A severe infiltration of neutrophils appeared in the submucosa and the lamina propria in wild‐type mice. In contrast, the degree of neutrophil infiltration in IL‐17?/– mice was significantly lower than that in wild‐type mice. Although wild‐type mice infected with H. pylori showed drastically higher MPO activity compared with uninfected wild‐type mice, any significant increase in the enzyme activity was not revealed in infected IL‐17?/– mice. The number of H. pylori colonized in the stomach of IL‐17?/– mice was significantly lower than that of wild‐type mice from 1 to 6 months after infection. Conclusions: These results suggest that IL‐17 may play an important role in the inflammatory response to the H. pylori infection and ultimately influence the outcome of the H. pylori‐associated disease.  相似文献   

13.
Background. Helicobacter pylori is accepted as a definite human gastric carcinogen from an epidemiological point of view despite insufficient experimental data. Although we previously showed that the number of p53 immunopositive cells in the atrophic gastric mucosa of H. pylori‐infected Japanese monkeys gradually increased over time, data on p53 gene mutations were not obtained in that study. To obtain direct evidence of carcinogenesis associated with H. pylori infection, we investigated whether p53 gene mutations are present in the gastric mucosa of a nonhuman primate model susceptible to H. pylori. Materials and Methods. Using the DNA from gastric tissues obtained from six H. pylori‐uninfected monkeys of different ages, nucleotide sequence of the wild‐type p53 gene was determined by amplification of exons (Ex) 5, 6, 7 and 8 and sequencing. Gastric specimens obtained from eight Japanese monkeys that had been infected with H. pylori for different lengths of time (1.5–7.5 years), were analyzed for mutations in exons 5–8 of p53. Results. In the six H. pylori‐uninfected monkeys, nucleotide sequences of p53 Ex 5–8 were completely common and no mutations were noted. However, among the monkeys that were infected with H. pylori over various periods of time, there was an accumulation of p53 nucleotide (amino acid) substitutions as the gastric atrophy score increased. Conclusions. We conclude that the appearance of p53 gene mutation may be closely associated with the degree of gastric mucosal atrophy, which depends on the duration of H. pylori infection. Searching for p53 gene mutations may be useful for studying the progression of gastric carcinogenesis associated with H. pylori.  相似文献   

14.
Chen M  Chen J  Liao W  Zhu S  Yu J  Leung WK  Hu P  Sung JJ 《Helicobacter》2003,8(6):613-625
Aim. To evaluate the protective effect of live attenuated Salmonella typhimurium expressing catalase against gastric Helicobacter pylori infection in mice, and to explore the underlying mechanisms of the protective immune reaction. Materials and Methods The H. pylori catalase gene was introduced into attenuated S. typhimurium strain SL3261. C57BL/6 mice were orally immunized with the SL3261 vaccine strain expressing catalase or with SL3261 alone or phosphate‐buffered saline (PBS). Mice were sacrificed 4 weeks after immunization and 5 weeks after H. pylori challenge, respectively. Results. All PBS control mice were infected. Eight of 13 (61.5%) mice immunized with the SL3261 vaccine strain and three of 14 (21%) mice immunized with SL3261 alone showed protection against H. pylori infection. Serum anti‐H. pylori IgG2a levels of S. typhimurium‐immunized mice were higher than those of PBS controls, both before and after H. pylori challenge, while there were no differences for IgG1 and IgA. Similarly, mRNA expression of interleukin (IL)‐2, IL‐12 and interferon‐γ in the gastric mucosa of S. typhimurium‐immunized mice was significantly higher than that of PBS controls both before and after challenge. Moreover, S. typhimurium‐immunized mice were characterized by marked infiltration of lymphocyte and mononuclear cells in the gastric mucosa after challenge. IL‐4 and IL‐10 were not detected in any of the three groups. IL‐6 expression was increased in the PBS group compared with the S. typhimurium‐immunized groups after challenge. Conclusions. This study demonstrates that oral immunization of mice with catalase delivered by an attenuated S. typhimurium strain offers protection against H. pylori infection. This protective immunity was mediated through a predominantly Th1‐type response and was associated with post‐immunization gastritis.  相似文献   

15.
Hu S  Xie Y  Zhou N  Jin L  Tan Y  Liu D  Gong Y  Liu L  Liu J  Liu W  Chen Y  Zhang Y  Lv N 《Helicobacter》2011,16(5):373-381
Background: Th immune response plays an important role in Helicobacter pylori (H. pylori) infection. Tim‐1 and Tim‐3 are expressed on terminally differentiated Th2 and Th1 cells, respectively, and participate in the regulation of Th immune response. Until now, the role of Tim in H. pylori infection remains unclear. Materials and Methods: (1) Lymphocytes isolated from the spleen of BALB/c mice were co‐cultured with different concentrations of viable H. pylori. Alternatively, mice were challenged by viable H. pylori to set up the H. pylori infection model. (2) The expression of Tim‐1 and Tim‐3 on mRNA level in lymphocytes or spleen of mice was determined by RT‐PCR. The percentage of Tim‐3‐positive cells was determined by flow cytometric analysis. The production of cytokine in supernatants was measured by standard sandwich cytokine ELISA. Results: (1) Co‐culture: At 12 hours, there was markedly decreased production of Tim‐1 and increased production of Tim‐3 in lymphocytes co‐cultured with H. pylori compared with normal control. The change of Th2 cytokine had the similar tendency as that of Tim‐1 expression; alternatively, the change of Th1 cytokine had the similar tendency as that of Tim‐3 expression. (2) Infection: Tim‐1 expression was declined in infected mice compared with control group; in the contrast, Tim‐3 expression was increased. Furthermore, the expression of Tim‐1 and Tim‐3 mRNA in spleen was significantly positively correlated with the level of Th2 and Th1 cytokine in gastric homogenized supernatant, respectively. Conclusion: H. pylori could inhibit the differentiation of T lymphocytes toward Th2 cells, promote the Th1 cell differentiation, and induce Th1‐biased immune response. The expression of Tim‐1 and Tim‐3 could reflect Th2 and Th1 immune response, respectively, which provide evidence for the prevention and treatment of H. pylori infection and correlation diseases through regulation of Tim‐1 and Tim‐3.  相似文献   

16.
Background. Helicobacter pylori (H. pylori) infection is associated with chronic infiltration into the stomach by T cells and plasma cells producing IFN‐γ and antibodies of various specificities, respectively. It is unknown whether these lymphocyte‐products may play coordinated roles in the gastric pathology of this infection. Aims. To know how IFN‐γ may relate to anti‐H. pylori antibodies in their roles in pathogenesis, we determined the isotype subclass of those antibodies as well as their cross‐reactivity and cytotoxicity to gastric epithelium. Methods and Results. We infected BALB/c mice with H. pylori (SS1, Sydney Strain 1) and generated monoclonal antibodies, which were comprised of 240 independent clones secreting immunoglobulin and included 80 clones reactive to SS1. Ninety percent of the SS1‐reactive clones had IgG2a isotype. Two clones, 2B10 and 1A9, were cross reactive to cell surface antigens in H. pylori and to antigens of 28 KDa and 42 KDa, respectively, which were present on the cell surface of and shared by both mouse and human gastric epithelial cells. The antigens recognized by these monoclonal antibodies localized a distinctive area in the gastric glands. In the presence of complement, 2B10 showed cytotoxicity to gastric epithelial cells. The effect was dose dependant and augmented by IFN‐γ. Finally, administration of 2B10 to mice with SS1 infection aggravated gastritis by increasing cellular infiltration. Conclusion. IFN‐γ by gastric T cells may participate in pathogenesis of the H. pylori infected stomach by directing an isotype‐switch of anti‐H. pylori antibodies to complement‐binding subclass and by augmenting cytotoxic activity of a certain autoantibody. This may explain a host‐dependent diversity in gastric pathology of the patients with H. pylori infection.  相似文献   

17.
Background: Lactobacillus and Bifidobacterium species have shown beneficial effects in the treatment of Helicobacter pylori infection; however, the mechanisms behind such effects are not fully understood. In this study, we have investigated the immunomodulatory effects of probiotics in a mouse model of H. pylori infection. Materials and methods: H. pylori‐infected C57BL/6 mice were treated with L. casei L26, B. lactis B94, or no probiotics for 5 weeks, respectively. Mice not infected with H. pylori were included as normal controls. Gastric histology, protein levels of interleukin (IL)‐1β, IL‐10, IL‐12/23p40, and H. pylori colonization density in the gastric tissues, as well as H. pylori‐specific antibodies were examined. Results: In mice receiving L. casei L26 and B. lactis B94, gastric neutrophil infiltration and IL‐1β were significantly decreased and IL‐10 was significantly increased as compared with mice receiving no probiotics. In mice receiving B. lactis B94, IL‐12/23p40 was significantly increased and H. pylori IgG was significantly reduced as compared with mice receiving no probiotics. No significant difference of H. pylori colonization was observed among the three groups of mice. Conclusion: The reduced level of IL‐1β and neutrophil infiltration observed in mice infected with H. pylori following treatment with L. casei L26 and B. lactis B94 resulted from a modulation of immune response rather than a decrease of H. pylori colonization. Furthermore, B. lactis B94 has the intrinsic ability to promote a Th1 immune response through an increase in IL‐12/IL‐23.  相似文献   

18.
Background: Osteopontin (OPN) is involved in the gastric cancer progression. The study validated whether OPN expressions correlate with Helicobacter pylori‐related chronic gastric inflammation and the precancerous change as intestinal metaplasia (IM). Methods: This study included 105 H. pylori‐infected patients (63 without and 42 with IM) and 29 H. pylori‐negative controls. In each subject, the gastric OPN expression intensity was evaluated by immunohistochemistry, and graded from 0 to 4 for the epithelium, lamina propria, and areas with IM, respectively. For the H. pylori‐infected subjects, the gastric inflammation was assessed by the Updated Sydney System. Forty‐nine patients received follow‐up endoscopy to assess OPN change on gastric mucosa after H. pylori eradication. The in vitro cell‐H. pylori coculture were performed to test the cell origin of OPN. Results: The H. pylori‐infected patients had higher gastric OPN expression than the noninfected controls (p < .001). For the H. pylori‐infected patients, an increased OPN expression correlated with more severe chronic gastric inflammation (p < .001) and the presence of IM (OR: 2.6, 95% CI: 1.15–5.94, p = .02). Within the same gastric bits, lamina propria expressed OPN stronger than epithelium (p < .001), suggesting OPN predominantly originates from inflammatory cells. The in vitro assay confirmed H. pylori stimulate OPN expression in the monocytes, but not in the gastric epithelial cells. After H. pylori eradication, the gastric OPN expression could be decreased only in areas without IM (p < .05). Conclusions: Increased gastric OPN expression by H. pylori infection can correlate with a more severe gastric inflammation and the presence of IM.  相似文献   

19.
Background. Two types of mucous cell are present in gastric mucosa: surface mucous cells (SMCs) and gland mucous cells (GMCs), which consist of cardiac gland cells, mucous neck cells, and pyloric gland cells. We have previously reported that the patterns of glycosylation of SMC mucins are reversibly altered by Helicobacter pylori infection. In this study, we evaluated the effects of H. pylori infection on the expression of GMC mucins in pyloric gland cells. Methods. Gastric biopsy specimens from the antrums of 30 H. pylori‐infected patients before and after eradication of H. pylori and 10 normal uninfected volunteers were examined by immunostaining for MUC6 (a core protein of GMC mucins), α1,4‐N‐acetyl‐glucosaminyl transferase (α4GnT) (the glycosyltransferase which forms GlcNAcα1‐4Galβ‐R), and GlcNAcα1‐4Galβ‐R (a GMC mucin‐specific glycan). Results. MUC6, α4GnT, and HIK1083‐reactive glycan were expressed in the cytoplasm, supranuclear region, and secretory granules in pyloric gland cells, respectively. The immunoreactivity of MUC6 and α4GnT, but not of GlcNAcα1‐4Galβ‐R, in the pyloric gland increased in H. pylori‐associated gastritis, and after the eradication of H. pylori, the increased expression of MUC6 and α4GnT in the gastric mucosa of H. pylori‐infected patients decreased to almost normal levels. This up‐regulation was correlated with the degree of inflammation. Conclusions. In addition to the synthesis of GMC mucins increasing reversibly, their metabolism or release may also increase reversibly in H. pylori‐associated gastritis. The up‐regulation of the expression of gastric GMC mucins may be involved in defense against H. pylori infection in the gastric surface mucous gel layer and on the gastric mucosa.  相似文献   

20.
Background: Gastric (GU) and duodenal ulcers (DU) are in most instances either induced by Helicobacter pylori infection or by nonsteroidal anti‐inflammatory drugs (NSAIDs). Whether eradication of H. pylori is beneficial in NSAID users for preventing NSAID induced GU and DU has been the focus of different studies. Materials and Methods: Mechanisms shared by both H. pylori and NSAIDs for the induction of GU and DU were reviewed and randomized controlled trials on H. pylori eradication for prevention and healing of GU and DU in patients requiring NSAID therapy were identified by a PubMed search. Results: Key factors in the induction of GU and DU for both H. pylori and NSAIDs are a decrease in pH, imbalance between apoptosis and proliferation, reduction in mucosal blood flow, and recruitment of polymorphonucleates in distinct compartments. For primary ulcer prevention, H. pylori eradication before starting an NSAID therapy reduces the risk of NSAID induced GU and virtually abolishes the risk of DU. H. pylori eradication alone is not sufficient for secondary prevention of NSAID induced GU and DU. H. pylori infection appears to further increase the protective effects of proton‐pump inhibitors (PPI) to reduce the risk of ulcer relapse. H. pylori eradication does not influence the healing of both GU and DU if NSAID intake is discontinued. Conclusions: Duodenal ulcer is more closely related to H. pylori infection than GU in NSAID users. H. pylori eradication is recommended for primary prevention of GU and DU in patients requiring NSAID therapy. PPI therapy is mandatory for secondary prevention of gastroduodenal ulcers, and appears to further reduce the risk of ulcer relapse in the presence of H. pylori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号