首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages   总被引:1,自引:0,他引:1  
We report Zn(2+)-dependent deoxyribozymes that ligate RNA. The DNA enzymes were identified by in vitro selection and ligate RNA with k(obs) up to 0.5 min(-)(1) at 1 mM Zn(2+) and 23 degrees C, pH 7.9, which is substantially faster than our previously reported Mg(2+)-dependent deoxyribozymes. Each new Zn(2+)-dependent deoxyribozyme mediates the reaction of a specific nucleophile on one RNA substrate with a 2',3'-cyclic phosphate on a second RNA substrate. Some of the Zn(2+)-dependent deoxyribozymes create native 3'-5' RNA linkages (with k(obs) up to 0.02 min(-)(1)), whereas all of our previous Mg(2+)-dependent deoxyribozymes that use a 2',3'-cyclic phosphate create non-native 2'-5' RNA linkages. On this basis, Zn(2+)-dependent deoxyribozymes have promise for synthesis of native 3'-5'-linked RNA using 2',3'-cyclic phosphate RNA substrates, although these particular Zn(2+)-dependent deoxyribozymes are likely not useful for this practical application. Some of the new Zn(2+)-dependent deoxyribozymes instead create non-native 2'-5' linkages, just like their Mg(2+) counterparts. Unexpectedly, other Zn(2+)-dependent deoxyribozymes synthesize one of three unnatural linkages that are formed upon the reaction of an RNA nucleophile other than a 5'-hydroxyl group. Two of these unnatural linkages are the 3'-2' and 2'-2' linear junctions created when the 2'-hydroxyl of the 5'-terminal guanosine of one RNA substrate attacks the 2',3'-cyclic phosphate of the second RNA substrate. The third unnatural linkage is a branched RNA that results from attack of a specific internal 2'-hydroxyl of one RNA substrate at the 2',3'-cyclic phosphate. When compared with the consistent creation of 2'-5' linkages by Mg(2+)-dependent ligation, formation of this variety of RNA ligation products by Zn(2+)-dependent deoxyribozymes highlights the versatility of transition metals such as Zn(2+) for mediating nucleic acid catalysis.  相似文献   

3.
Studies utilizing phospholipid vesicle loaded with chelator/indicators for polyvalent cations show that ionomycin transports divalent cations with the selectivity sequence Pb(2+) > Cd(2+) > Zn(2+) > Mn(2+) > Ca(2+) > Cu(2+) > Co(2+) > Ni(2+) > Sr(2+). The selectivity of this ionophore for Pb(2+) is in contrast to that observed for A23178 and 4-BrA23187, which transport Pb(2+) at efficiencies that are intermediate between those of other cations. When the selectivity difference of ionomycin for Pb(2+) versus Ca(2+) was calculated from relative rates of transport, with either cation present individually and all other conditions held constant, a value of approximately 450 was obtained. This rose to approximately 3200 when both cations were present and transported simultaneously. 1 microM Pb(2+) inhibited the transport of 1 mM Ca(2+) by approximately 50%, whereas the rate of Pb(2+) transport approached a maximum at a concentration of 10 microM Pb(2+) when 1 mM Ca(2+) was also present. Plots of log rate versus log ionomycin or log Pb(2+) concentration indicated that the transporting species is of 1:1 stoichiometry, ionophore to Pb(2+), but that complexes containing an additional Pb(2+) may occur. The species transporting Pb(2+) may include H.IPb.OH, wherein ionomycin is ionized once and the presence of OH(-) maintains charge neutrality. Ionomycin retained a high efficiency for Pb(2+) transport in A20 B lymphoma cells loaded with Indo-1. Both Pb(2+) entry and efflux were observed. Ionomycin should be considered primarily as an ionophore for Pb(2+), rather than Ca(2+), of possible value for the investigation and treatment of Pb(2+) intoxication.  相似文献   

4.
Extraordinary rates of transition metal ion-mediated ribozyme catalysis   总被引:2,自引:1,他引:1  
In pre-steady-state, fast-quench kinetic analysis, the tertiary-stabilized hammerhead ribozyme "RzB" cleaves its substrate RNA with maximal measured k (obs) values of approximately 3000 min(-1) in 1 mM Mn(2+) and approximately 780 min(-1) in 1 mM Mg(2+) at 37 degrees C (pH 7.4). Apparent pKa for the catalytic general base is approximately 7.8-8.5, independent of the corresponding metal hydrate pKa, suggesting potential involvement of a nucleobase as general base as suggested previously from nucleobase substitution studies. The pH-rate profile is bell-shaped for Cd(2+), for which the general catalytic acid has a pKa of 7.3 +/- 0.1. Simulations of the pH-rate relation suggest a pKa for the general catalytic acid to be approximately 9.5 in Mn(2+) and >9.5 in Mg(2+). The acid pKa's follow the trend in the pKa of the hydrated metal ions but are displaced by approximately 1-2 pH units in the presence of Cd(2+) and Mn(2+). One possible explanation for this trend is direct metal ion coordination with a nucleobase, which then acts as general acid.  相似文献   

5.
Protein metalloenzymes use various modes for functions for which metal-dependent global conformational change is required in some cases but not in others. In contrast, most ribozymes require a global folding that almost always precedes enzyme reactions. Herein we studied metal-dependent folding and cleavage activity of the 8-17 DNAzyme using single-molecule fluorescence resonance energy transfer. Addition of Zn2+ and Mg2+ induced folding of the DNAzyme into a more compact structure followed by a cleavage reaction, which suggests that the DNAzyme may require metal-dependent global folding for activation. In the presence of Pb2+, however, the cleavage reaction occurred without a precedent folding step, which suggests that the DNAzyme may be prearranged to accept Pb2+ for the activity. Neither ligation reaction of the cleaved substrates nor dynamic changes between folded and unfolded states was observed. These features may contribute to the unusually fast Pb2+-dependent reaction of the DNAzyme. These results suggest that DNAzymes can use all modes of activation that metalloproteins use.  相似文献   

6.
A universal label-free metal ion sensor design strategy was developed on the basis of a metal ion-specific DNA/RNA-cleaving DNAzyme and a G-quadruplex DNAzyme. In this strategy, the substrate strand of the DNA/RNA-cleaving DNAzyme was designed as an intramolecular stem-loop structure, and a G-rich sequence was caged in the double-stranded stem and could not form catalytically active G-quadruplex DNAzyme. The metal ion-triggered cleavage of the substrate strand could result in the release of the G-rich sequence and subsequent formation of a catalytic G-quadruplex DNAzyme. The self-blocking mechanism of the G-quadruplex DNAzyme provided the sensing system with a low background signal. The signal amplifications of both the DNA/RNA-cleaving DNAzyme and the G-quadruplex DNAzyme provided the sensing system with a high level of sensitivity. This sensor design strategy can be used for metal ions with reported specific DNA/RNA-cleaving DNAzymes and extended for metal ions with unique properties. As examples, dual DNAzymes-based Cu(2+), Pb(2+) and Hg(2+) sensors were designed. These "turn-on" colorimetric sensors can simply detect Cu(2+), Pb(2+) and Hg(2+) with high levels of sensitivity and selectivity, with detection limits of 4nM, 14nM and 4nM, respectively.  相似文献   

7.
8.
The binding mechanism of Mg(2+) at the M3 site of human placental alkaline phosphatase was found to be a slow-binding process with a low binding affinity (K(Mg(app.)) = 3.32 mM). Quenching of the intrinsic fluorescence of the Mg(2+)-free and Mg(2+)-containing enzymes by acrylamide showed almost identical dynamic quenching constant (K(sv) = 4.44 +/- 0.09 M(-1)), indicating that there is no gross conformational difference between the M3-free and the M3-Mg(2+) enzymes. However, Zn(2+) was found to have a high affinity with the M3 site (K(Zn(app.)) = 0.11 mM) and was observed as a time-dependent inhibitor of the enzyme. The dependence of the observed transition rate from higher activity to lower activity (k(obs)) at different zinc concentrations resulted in a hyperbolic curve suggesting that zinc ion induces a slow conformational change of the enzyme, which locks the enzyme in a conformation (M3'-Zn) having an extremely high affinity for the Zn(2+) (K*(Zn(app.)) = 0.33 microM). The conformation of the M3'-Zn enzyme, however, is unfavorable for the catalysis by the enzyme. Both Mg(2+) activation and Zn(2+) inhibition of the enzyme are reversible processes. Structural information indicates that the M3 site, which is octahedrally coordinated to Mg(2+), has been converted to a distorted tetrahedral coordination when zinc ion substitutes for magnesium ion at the M3 site. This conformation of the enzyme has a small dynamic quenching constant for acrylamide (K(sv) = 3.86 +/- 0.04 M(-1)), suggesting a conformational change. Both Mg(2+) and phosphate prevent the enzyme from reaching this inactive structure. GTP plays an important role in reactivating the Zn-inhibited enzyme activity. We propose that, under physiological conditions, magnesium ion may play an important modulatory role in the cell for protecting the enzyme by retaining a favorable geometry of the active site needed for catalysis.  相似文献   

9.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

10.
Wang Y  Silverman SK 《Biochemistry》2003,42(51):15252-15263
We recently reported deoxyribozymes (DNA enzymes) that synthesize 2',5'-branched RNA. The in vitro-selected 9F7 and 9F21 deoxyribozymes mediate reaction of a branch-site adenosine 2'-hydroxyl on one RNA substrate with the 5'-triphosphate of another RNA substrate. Here we characterize these DNA enzymes with respect to their branch-forming activity. Both 9F7 and 9F21 are much more active with Mn(2+) than with Mg(2+). The K(d,app)(Mg(2+)) > 400 mM but K(d,app)(Mn(2+)) approximately 20-50 mM, and the ligation rates k(obs) are orders of magnitude faster with Mn(2+) than with Mg(2+) (e.g., 9F7 approximately 0.3 min(-1) with 20 mM Mn(2+) versus 0.4 h(-1) with 100 mM Mg(2+), both at pH 7.5 and 37 degrees C). Of the other tested transition metal ions Zn(2+), Ni(2+), Co(2+), and Cd(2+), only Co(2+) supports a trace amount of activity. 9F7 is more tolerant than 9F21 of varying the RNA substrate sequences. For the RNA substrate that donates the adenosine 2'-hydroxyl, 9F7 requires YUA, where Y = pyrimidine and A is the branch site. The 3'-tail emerging from the branch-site A may have indefinite length, but it must be at least one nucleotide long for high activity. The 5'-triphosphate RNA substrate requires several additional nucleotides with varying sequence requirements (5'-pppGRMWR). Outside of these regions that flank the ligation site, 9F7 and 9F21 tolerate any RNA substrate sequences via Watson-Crick covariation of the DNA binding arms that interact directly with the substrates. 9F7 provides a high yield of 2',5'-branched RNA on the preparative nanomole scale. The ligation reaction is effectively irreversible; the pyrophosphate leaving group in the ligation reaction does not induce 2',5'-cleavage, and pyrophosphate does not significantly inhibit ligation except in 1000-fold excess. Deleting a specific nucleotide in one of the DNA binding arms near the ligation junction enhances ligation activity, suggesting an interesting structure near this region of the deoxyribozyme-substrate complex. These data support the utility of deoxyribozymes in creating synthetic 2',5'-branched RNAs for investigations of group II intron splicing, debranching enzyme (Dbr) activity, and other biochemical reactions.  相似文献   

11.
Lam JC  Kwan SO  Li Y 《Molecular bioSystems》2011,7(7):2139-2146
RNA-cleaving deoxyribozymes (DNAzymes) can be isolated from random-sequence DNA pools via the process of in vitro selection. However, small and simple catalytic motifs, such as the 8-17 DNAzyme, are commonly observed in sequence space, presenting a challenge in discovering large and complex DNAzymes. In an effort to investigate underrepresented molecular species derived from in vitro selection, in this study we sought to characterize non-8-17 sequences obtained from a previous in vitro selection experiment wherein the 8-17 deoxyribozyme was the dominant motif. We examined 9 sequence families from 21 motifs by characterizing their structural and functional features. We discovered 9 novel deoxyribozyme classes with large catalytic domains (>40 nucleotides) utilizing three-way or four-way junction structural frameworks. Kinetic studies revealed that these deoxyribozymes exhibit moderate to excellent catalytic rates (k(obs) from 0.003 to 1 min(-1)), compared to other known RNA-cleaving DNAzymes. Although chemical probing experiments, site-directed mutational analyses, and metal cofactor dependency tests suggest unique catalytic cores for each deoxyribozyme, common dinucleotide junction selectivity was observed between DNAzymes with similar secondary structural features. Together, our findings indicate that larger, structurally more complex, and diverse catalytic motifs are able to survive the process of in vitro selection despite a sequence space dominated by smaller and structurally simpler catalysts.  相似文献   

12.
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.  相似文献   

13.
14.
Miyoshi D  Nakao A  Toda T  Sugimoto N 《FEBS letters》2001,496(2-3):128-133
The thermodynamic parameters of an antiparallel G-quartet formation of d(G4T4G4) with 1 mM divalent cation (Mg(2+), Ca(2+), Mn(2+), Co(2+), and Zn(2+)) were obtained. The thermodynamic parameters showed that the divalent cation destabilizes the antiparallel G-quartet of d(G4T4G4) in the following order: Zn(2+)>Co(2+)>Mn(2+)>Mg(2+)>Ca(2+). In addition, a higher concentration of a divalent cation induced a transition from an antiparallel to a parallel G-quartet structure. These results indicate that these divalent cations are a good tool for regulating the G-quartet structures.  相似文献   

15.
A phosphatase specific for the hydrolysis of 3-deoxy-d-manno-octulosonate (KDO)-8-phosphate was purified approximately 400-fold from crude extracts of Escherichia coli B. The hydrolysis of KDO-8-phosphate to KDO and inorganic phosphate in crude extracts of E. coli B, grown in phosphate-containing minimal medium, could be accounted for by the enzymatic activity of this specific phosphatase. No other sugar phosphate tested was an alternate substrate or inhibitor of the purified enzyme. KDO-8-phosphate phosphatase was stimulated three- to fourfold by the addition of 1.0 mM Co(+) or Mg(2+) and to a lesser extent by 1.0 mM Ba(2+), Zn(2+), and Mn(2+). The activity was inhibited by the addition of 1.0 mM ethylenediaminetetraacetic acid, Cu(2+), Ca(2+), Cd(2+), Hg(2+), and chloride ions (50% at 0.1 M). The pH optimum was determined to be 5.5 to 6.5 in both tris(hydroxymethyl)aminomethane-acetate and HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer. This specific phosphatase had an isoelectric point of 4.7 to 4.8 and a molecular weight of 80,000 +/- 6,000 as determined by molecular sieving and Ferguson analysis. The enzyme appeared to be composed of two identical subunits of 40,000 to 43,000 molecular weight. The apparent K(m) for KDO-8-phosphate was determined to be 5.8 +/- 0.9 x 10(-5) M in the presence of 1.0 mM Co(2+), 9.1 +/- 1 x 10(-5) M in the presence of 1.0 mM Mg(2+), and 1.0 +/- 0.2 x 10(-4) M in the absence of added Co(2+) or Mg(2+).  相似文献   

16.
The pathways of lead (Pb(2+)) uptake were studied in fura-2-loaded cerebellar granule cells from 8-day-old rats. In a nominal Ca-free external bath, Pb(2+) (5-50 microM) determined an increase of the fluorescence emission ratio (R = E(340)/E(380)) even in the absence of any specific stimulus. This rise was dose-dependent, was not significantly affected by mM Mg(2+) or Ca(2+), but it was readily reversed by the membrane-permeant heavy metal chelator tetrakis(2-pyridylmethyl) ethylene-diamine (TPEN, 100 microM), indicating that it was due to Pb(2+) influx. The rate of rise, dR/dt, was increased up to a factor of 5 by depolarizing high-KCl solution, indicating a sizeable permeation through voltage-dependent channels. This effect was neither antagonized by nimodipine, nor enhanced by BayK8644, but it was slackened by omega-agatoxin IVA (200 nM), suggesting an involvement of non-L-type calcium channels. Pb(2+) influx was also stimulated by glutamic acid or NMDA in the presence of 10-30 microM glycine, but only in Mg-free solution, suggesting that glutamate channels of the NMDA type are an additional pathway of Pb(2+) uptake. Pb(2+) caused a time-, dose- and stimulus-dependent saturation of the dye, whose intracellular concentration is approximately 10 microM, indicating that intracellular Pb(2+) can readily reach a concentration in the micromolar range. These results indicate that the particular vulnerability of neurones to Pb(2+) poisoning is linked to the presence of specific transport systems, which mediate the rapid uptake of Pb(2+) into the neurone.  相似文献   

17.
The effects of divalent cations (Zn2+, Cd2+, Ca2+, Mg2+) on the cytosol androgen receptor were determined by sedimentation into sucrose gradients. At low ionic strength (25 mM KCl, 50 mM Tris, pH 7.4), Zn2+ (200 microM total, which calculates to 130 nM free Zn2+ in 10 mM mercaptoethanol) causes a shift in the sedimentation coefficient of the rat Dunning prostate tumor (R3327H) cytosol receptor and rat ventral prostate cytosol receptor from 7.5 +/- 0.3 S to 8.6 +/- 0.3 S. Zn2+ stabilizes the 8.6 S receptor form in salt concentrations up to 0.15 M KCl in 50 mM Tris, pH 7.2. In low ionic strength gradients containing Ca2+ (greater than or equal to 200 microM) or Mg2+ (greater than or equal to 1 mM), the receptor sediments as 4.7 +/- 0.3 S. The dissociating effects of Ca2+ and Mg2+ can be fully reversed by sedimentation into gradients containing Zn2+ (200 microM total) or Cd2+ (10 microM total). In the presence of Zn2+ (200 microM total), Ca2+ (10 microM to 3 mM) converts the receptor to an intermediate form with sedimentation coefficient 6.2 +/- 0.2 S, Stokes radius 73 A, and apparent Mr approximately 203,000. The potentiating effect of Zn2+ on formation of the 8.6 S receptor (in the absence of Ca2+) and the 6.2 S receptor (in the presence of Ca2+) requires both the 4.5 S receptor and the 8 S androgen receptor-promoting factor. Sodium molybdate stabilizes the untransformed cytosol receptor but, unlike Zn2+, does not promote reconstitution of the 8.6 S receptor from its partially purified components. These results indicate that divalent cations alter the molecular size of the androgen receptor in vitro and thus may have a role in altering the state of transformation of the receptor.  相似文献   

18.
We measured changes in the intrinsic fluorescence (IF) of the neurosecretory terminals of the mouse neurohypophysis during brief (1-2 s) trains of stimuli. With fluorescence excitation at either 350 +/- 20 or 450 +/- 50 nm, and with emission measured, respectively, at 450 +/- 50 or > or = 520 nm, DeltaF/F(o) was approximately 5-8 % for a 2 s train of 30 action potentials. The IF changes lagged the onset of stimulation by approximately 100 ms and were eliminated by 1 microM tetrodotoxin (TTX). The signals were partially inhibited by 500 microM Cd(2+), by substitution of Mg(2+) for Ca(2+), by Ca(2+)-free Ringer's with 0.5 mM EGTA, and by 50 microM ouabain. The IF signals were also sensitive to the mitochondrial metabolic inhibitors CCCP (0.3 microM), FCCP (0.3 microM), and NaN(3) (0.3 mM), and their amplitude reflected the partial pressure of oxygen (pO(2)) in the bath. Resting fluorescence at both 350 nm and 450 nm exhibited significant bleaching. Flavin adenine dinucleotide (FAD) is fluorescent, while its reduced form FADH(2) is relatively non-fluorescent; conversely, NADH is fluorescent, while its oxidized form NAD is non-fluorescent. Thus, our experiments suggest that the stimulus-coupled rise in [Ca(2+)](i) triggers an increase in FAD and NAD as FADH(2) and NADH are oxidized, but that elevation of [Ca(2+)](i), alone cannot account for the totality of changes in intrinsic fluorescence.  相似文献   

19.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

20.
The mouse Slc39a8 gene encodes the ZIP8 transporter, which has been shown to be a divalent cation/HCO3- symporter. Using ZIP8 cRNA-injected Xenopus oocyte cultures, we show herein that: [a] ZIP8-mediated cadmium (Cd(2+)) and zinc (Zn(2+)) uptake have V(max) values of 1.8+/-0.08 and 1.0+/-0.08 pmol/oocyte/h, and K(m) values of 0.48+/-0.08 and 0.26+/-0.09 microM, respectively; [b] ZIP8-mediated Cd(2+) uptake is most inhibited by Zn(2+), second-best inhibited by Cu(2+), Pb(2+) and Hg(2+), and not inhibited by Mn(2+) or Fe(2+); and [c] electrogenicity studies demonstrate an influx of two HCO3- anions per one Cd(2+) (or one Zn(2+)) cation, i.e. electroneutral complexes. Using Madin-Darby canine kidney (MDCK) polarized epithelial cells retrovirally infected with ZIP8 cDNA and tagged with hemagglutinin at the C-terminus, we show that-similar to ZIP4-the ZIP8 eight-transmembrane protein is largely internalized during Zn(2+) homeostasis, but moves predominantly to the cell surface membrane (trafficking) under conditions of Zn(2+) depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号