首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Chung HJ  Kim EJ  Suh B  Choi JH  Roe JH 《Gene》1999,231(1-2):87-93
Streptomyces coelicolor Müller contains two types of superoxide dismutase (SOD) containing Ni (encoded by sodN) or Fe (encoded by sodF). Unlike a single species of Fe-containing SOD in Müller strain, multiple forms of FeSODs were detected in S. coelicolor A3(2) strain by activity staining and Western blot analysis. Genomic Southern hybridization suggested the presence of at least two copies of the sodF-like gene in A3(2). Two different genes for FeSOD (sodF1 and sodF2) were isolated from the phage library of A3(2) genome. The nucleotide sequence of the sodF1 coding region was identical with the unique sodF gene from Müller while that of sodF2 shared 88% identity. The gene products of sodF1 and sodF2 were identified by activity staining and immunoblot analysis. Expression from the sodF1 gene was repressed by nickel as sensitively as Müller sodF, suggesting the presence of Ni-responsive regulatory site within the region shared by the two genes. Among 12 other Streptomyces species examined, only S. fradiae contained two FeSOD-like polypeptides. We postulate that the additional copy of the sodF gene (sodF2) was provided by the horizontal transfer from remotely related bacteria.  相似文献   

4.
5.
6.
Two-dimensional (2-D) polyacrylamide gel electrophoresis was used to detect proteins induced in Frankia sp. strain ACN14a-tsr by root exudates of its symbiotic host, Alnus glutinosa. The 5 most prominent proteins were purified from 2-D gels and characterized by N-terminal sequencing. All of these proteins had a high percentage of similarity with known stress proteins. One protein match was the Fe superoxide dismutase (Fe-SOD), another was a tellurite resistance protein (Ter), the third was a bacterioferritin comigratory protein (Bcp); and two matches, differing only by their isoelectric point, were the same small heat shock protein (Hsp), a major immune reactive protein found in mycobacteria. This suggests that the symbiotic microorganism Frankia, first responds with a normal stress response to toxic root products of its symbiotic host plant. To confirm its identity, the gene corresponding to the Fe-SOD protein, sodF was isolated from a genomic library by a PCR-approach and sequenced. It is the first stress response gene characterized in Frankia.  相似文献   

7.
8.
R P Wharton  E L Brown  M Ptashne 《Cell》1984,38(2):361-369
It has been suggested that many DNA-binding proteins use an alpha-helix for specific sequence recognition. We have used amino acid sequence homologies to identify the presumptive DNA-recognition helices in two related proteins whose structures are unknown--the repressor and cro protein of bacteriophage 434. The 434 repressor and cro protein each bind to three similar sites in the rightward phage 434 operator, OR, and they make different contacts in each binding site, as revealed by the chemical probe dimethyl sulfate. We substituted the putative recognition alpha-helix of 434 repressor with the putative recognition alpha-helix of 434 cro protein to create a hybrid protein named repressor*. The specific DNA contacts made by repressor* are like those of 434 cro protein.  相似文献   

9.
A partial duplex DNA substrate containing the Lac repressor binding site, within the duplex region, was constructed to examine the effect of bound Lac repressor on the unwinding reaction catalyzed by several DNA helicases. The substrate contained 90 base pairs of double-stranded DNA and, in the absence of Lac repressor, was effectively unwound by each of the seven helicases tested. The unwinding reactions catalyzed by Escherichia coli Rep protein, bacteriophage T4 Dda protein and E. coli DNA helicase I were not inhibited by the presence of bound Lac repressor. Both SV40 T antigen and E. coli helicase II were partially inhibited by bound repressor at the highest repressor concentrations tested. The helicase reactions catalyzed by E. coli DnaB protein and helicase IV were substantially inhibited by the presence of bound protein. When the length of the duplex region was increased to 323 base pairs the inhibition spectrum caused by bound Lac repressor on the unwinding reactions catalyzed by DnaB protein, helicase I and helicase II was essentially the same as that observed using the shorter partial duplex molecule. Inhibition of the unwinding reaction was due to the presence of bound Lac repressor as evidenced by the substantially weaker inhibition of helicase IV by Lac repressor in the presence of IPTG. In addition, we have shown that Rep protein displaces the bound repressor protein during the course of an unwinding reaction.  相似文献   

10.
Treatments that damage DNA or inhibit DNA synthesis in E. coli induce the expression of a set of functions called SOS functions that are involved in DNA repair, mutagenesis, arrest of cell division and prophage induction. Induction of SOS functions is triggered by inactivation of the LexA repressor or a phage repressor. Inactivation of these repressors results from their cleavage by the E. coli RecA protein in the presence of single-stranded DNA and a nucleoside triphosphate.We found that these cleavage reactions are controlled by two mechanisms in vitro: one is through the structural change of the RecA protein in the ternary complex, RecA-ssDNA-ATP-γ-S. The active ternary complex is formed by binding of ATP-γ-S to a complex of RecA protein and ssDNA. On the other hand, when the RecA protein binds to ATP-γ-S prior to its binding to ssDNA, the resulting complex has no or only very weak cleavage activity toward the repressor. This structural change is negatively controlled by its C-terminal part. The loss of the 25 amino acid residues from the C-terminal leads the RecA protein to stable binding to dsDNA as well as ssDNA, and the protein takes the activated form for the repressor cleavage constitutively. The other mechanism is through the structural change of the repressor. The cleavage reaction of a ∅80cI repressor is greatly stimulated by the presence of d(G-G), and d(G-G) stimulates the cleavage by binding to the C-terminal half of the ∅80cI repressor. Moreover, the C-terminal fragment of the cleaved products of the 80cI repressor was able to cleave a ∅80cI-λ chimeric repressor. These results strongly suggested that th active site of the repressor cleavage was located in the C-terminal domain of the repressor and that the C-terminal fragment produced by the cleavage could cleave the repressor.  相似文献   

11.
The tetracycline repressor of pSC101   总被引:5,自引:0,他引:5  
  相似文献   

12.
Hays LB  Chen YS  Hu JC 《BioTechniques》2000,29(2):288-90, 292, 294 passim
The yeast two-hybrid system has been used to characterize many protein-protein interactions. A two-hybrid system for E. coli was constructed in which one hybrid protein bound to a specific DNA site recruits another to an adjacent DNA binding site. The first hybrid comprises a test protein, the bait, fused to a chimeric protein containing the 434 repressor DNA binding domain. In the second hybrid, a second test protein, the prey, is fused downstream of a chimeric protein with the DNA binding specificity of the lambda repressor. Reporters were designed to express cat and lacZ under the control of a low-affinity lambda operator. At low expression levels, lambda repressor hybrids weakly repress the reporter genes. A high-affinity operator recognized by 434 repressor was placed nearby, in a position that does not yield repression by 434 repressor alone. If the test proteins interact, the 434 hybrid bound to the 434 operator stabilizes the binding of the lambda repressor hybrid to the lambda operator, causing increased repression of the reporter genes. Reconstruction experiments with the fos and jun leucine zippers detected protein-protein interactions between either homodimeric or heterodimeric leucine zippers.  相似文献   

13.
The deoR gene, which encodes the deor repressor protein in Escherichia coli, was fused to the strong Ptrc promoter in plasmid pKK233-2. The Ptrc promoter is kept repressed by lacI repressor to prevent cell killing. Induction of the Ptrc--deoR fusion plasmid resulted in the accumulation of 4% of the soluble protein as deoR protein. The deoR repressor protein was purified to 80% purity using conventional techniques; it has a mass of 28.5 kd and appears to exist as an octamer in solution. The deoR repressor is shown by DNase I footprinting to bind to the 16 bp palindromic sequence in the Pribnow box region of the deoP1 promoter. Also, the deoR repressor binds cooperatively in vitro to a DNA template with two deoR binding sites separated by 224 bp in keeping with the conclusion from genetic experiments that more than one operator is required for efficient repression of the deo operon.  相似文献   

14.
Intracellular Trp repressor levels in Escherichia coli.   总被引:6,自引:2,他引:4       下载免费PDF全文
A radioimmunoassay for the Trp repressor protein of Escherichia coli was developed with antisera raised against purified Trp repressor protein. This assay was used to directly measure the intracellular Trp repressor content in several E. coli K-12 and B/r strains. Repressor levels varied from 2.5- to 3-fold in response to L-tryptophan concentration in the growth medium (15 to 44 ng of repressor per mg of protein). Neither cell growth rate nor culture age had a significant effect on repressor concentrations within the cell. Addition of L-tryptophan to the growth medium resulted in lowered intracellular levels of Trp repressor. The absolute amounts of native Trp repressor molecules per cell varied between 120 and 375 dimers in the presence and absence of L-tryptophan in the culture medium, respectively. Assuming an intracellular volume of 7.3 microliters/10(10) E. coli cells, the Trp repressor concentration varied from 270 to 850 nM in response to extracellular tryptophan levels. These findings represent the first direct measurements of Trp repressor levels in E. coli and confirm the autoregulatory nature of the trpR gene.  相似文献   

15.
Turning lambda Cro into a transcriptional activator   总被引:9,自引:0,他引:9  
F D Bushman  M Ptashne 《Cell》1988,54(2):191-197
  相似文献   

16.
John Imsande 《Genetics》1973,75(1):1-17
5-methyltryptophan (5MT) induces penicillinase synthesis in Staphylococcus aureus. The analog is incorporated into protein by both wild-type and tryptophan-starved cells. Since normal penicillinase repressor appears to contain tryptophan even though penicillinase itself does not, it is concluded that 5MT induces penicillinase synthesis by becoming incorporated into the penicillinase repressor and thereby inactivating the repressor. Thus biochemical data support the existence of a penicillinase repressor and indicate that penicillinase synthesis is regulated by negative control and not by positive control.-In the absence of exogenous tryptophan, staphylococcal penicillinase induction can be inhibited by 7-azatryptophan (7azaT). Because 7azaT is incorporated into protein by tryptophan-starved cells, it is concluded that 7azaT blocks penicillinase induction by inactivating a penicillinase regulatory protein into which the analog has been incorporated. Incorporation of 7azaT does not appear to inactivate the operator binding site or the effector binding site on the penicillinase repressor. Therefore, it appears that 7azaT blocks penicillinase induction by inactivating the penicillinase antirepressor, a protein required for inactivation of the penicillinase repressor and, hence, required for penicillinase induction.  相似文献   

17.
The interaction of Trp repressor protein with partial trp operators was studied in vitro and in vivo. At high ratios of protein to DNA, Trp holorepressor formed stable complexes with DNA molecules containing half operators. When plasmids conferring the capacity to hyperproduce Trp repressor were present in trpOc strains of Escherichia coli, repression of downstream tryptophan synthase occurred. Palindromicity of the trp operator may facilitate stable interaction with Trp repressor, but this attribute need not be regarded as a critically essential structural feature. Sufficient information for the recognition by Trp repressor protein of an appropriate target resides within a DNA sequence of approximately ten base-pairs.  相似文献   

18.
T J Daly  J S Olson  K S Matthews 《Biochemistry》1986,25(19):5468-5474
The lactose repressor protein has been modified with three sulfhydryl-specific reagents which form mixed disulfide adducts. Methyl methanethiosulfonate (MMTS) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) completely reacted with all three cysteine residues, whereas only partial reaction was observed with didansylcystine. Cysteines-107 and -140 reacted stoichiometrically with MMTS and DTNB, while Cys-281 was modified only at higher molar ratios. Didansylcystine reacted primarily with cysteines-107 and -140. Affinity of MMTS-modified repressor for 40 base pair operator DNA was decreased 30-fold compared to unmodified repressor, and this decrease correlated with modification of cysteine-281. DTNB-modified repressor bound operator DNA with a 50-fold weaker affinity than unmodified repressor. Modification of the lac repressor with didanylcystine decreased operator binding only 4-fold, and nonspecific DNA binding increased 3-fold compared to unmodified repressor. No change in the inducer equilibrium binding constant was observed following modification with any of these reagents. In contrast, inducer association and dissociation rate constants were decreased approximately 50-fold for repressor completely modified with MMTS or DTNB, while didansylcystine had minimal effect on inducer binding kinetics. Correlation between modification of Cys-281 and the observed decrease in rate constants indicates that this region of the protein regulates the accessibility of the sugar binding site. The parallel between the increase in the Kd for repressor binding to operator, the altered rate constant for inducer binding, and modification of cysteine-281 suggests that this region of the protein is crucially involved in the function of the repressor protein.  相似文献   

19.
Previous studies implicated cysteine residues in the translational repressor (i.e. RNA binding) activity of the coat protein of bacteriophage MS2. It has been proposed that a protein sulfhydryl forms a transient covalent bond with an essential pyrimidine in the translational operator by a Michael addition reaction. We have utilized codon-directed mutagenesis methods to determine the importance of each of the two coat protein cysteines for repressor function in vivo. The results indicate that cys46 can be replaced by a variety of amino acids without loss of repressor function. Cys101, on the other hand, is more sensitive to substitution. Most position 101 substitutions inactivate the repressor, but one (arginine) results in normal repressor activity. Although the possibility of a transient covalent contact between cys101 and RNA is not categorically ruled out, construction of double mutants demonstrates that cysteines are not absolutely required for translational repression by coat protein.  相似文献   

20.
The kinetics of coupling of protein dimerization and DNA binding have been investigated in the biotin repressor system. Two repressor monomers bind to the 40 base-pair biotin operator sequence. In previous analyses of equilibrium-binding data the weak dimerization of the repressor has justified using a model in which two protein monomers bind cooperatively to the operator site. Here, rapid kinetic methods have been used to directly determine the binding mechanism. Results of rapid-mixing DNaseI footprinting measurements of association of the repressor with operator indicate that the binding process involves at least two steps. Results of measurements of the unimolecular dissociation of the complex reveal a half-life of approximately 400 seconds. Analysis of the data using a combination of simulation and global non-linear least-squares analysis provides support for a binding model in which a preformed repressor dimer associates with the biotin operator. This kinetic model is consistent with the previously proposed model for regulation of the functional switch in the repressor from enzyme to site-specific DNA-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号