首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

2.
We have developed a generic procedure to purify proteins expressed at their natural level under native conditions using a novel tandem affinity purification (TAP) tag. The TAP tag allows the rapid purification of complexes from a relatively small number of cells without prior knowledge of the complex composition, activity, or function. Combined with mass spectrometry, the TAP strategy allows for the identification of proteins interacting with a given target protein. The TAP method has been tested in yeast but should be applicable to other cells or organisms.  相似文献   

3.
Identification of protein-protein interactions is essential for elucidating the biochemical mechanism of signal transduction. Purification and identification of individual proteins in mammalian cells have been difficult, however, due to the sheer complexity of protein mixtures obtained from cellular extracts. Recently, a tandem affinity purification (TAP) method has been developed as a tool that allows rapid purification of native protein complexes expressed at their natural level in engineered yeast cells. To adapt this method to mammalian cells, we have created a TAP tag retroviral expression vector to allow stable expression of the TAP-tagged protein at close to physiological levels. To demonstrate the utility of this vector, we have fused a TAP tag, consisting of a protein A tag, a cleavage site for the tobacco etch virus (TEV) protease, and the FLAG epitope, to the N terminus of human SMAD3 and SMAD4. We have stably expressed these proteins in mammalian cells at desirable levels by retroviral gene transfer and purified native SMAD3 protein complexes from cell lysates. The combination of two different affinity tags greatly reduced the number of nonspecific proteins in the mixture. We have identified HSP70 as a specific interacting protein of SMAD3. We demonstrated that SMAD3, but not SMAD1, binds HSP70 in vivo, validating the TAP purification approach. This method is applicable to virtually any protein and provides an efficient way to purify unknown proteins to homogeneity from the complex mixtures found in mammalian cell lysates in preparation for identification by mass spectrometry.  相似文献   

4.
The identification of modular units of cellular function is a major goal for proteomic research. Protein complexes represent important building blocks defining functionality and deciphering their composition remains a major challenge. Here, we have designed a new tandem affinity purification (TAP) tag (termed S3S‐tag) for the isolation of protein complexes. Specifically, the immune cell protein ADAP that regulates integrin adhesion was fused either C‐ or N‐terminally to the S3S‐tag. After retroviral transduction of a vector containing S3S‐tagged ADAP and internal ribosomal entry site encoded enhanced green fluorescent protein (eGFP), Jurkat T cells were sorted according to eGFP expression and further selected for expression of TAP‐tagged protein close to endogenous levels. The combination of a cleavable S‐tag and a Strep‐tag II allowed for the isolation of ADAP and associated proteins. Subsequently, stable isotope labeling with amino acids in cell culture‐based mass spectrometric analysis was performed to identify potentially specific interaction partners. Co‐purification of the known interaction partner Src kinase‐associated phosphoprotein of 55 kDa indicates the validity of our approach, while the identification of the ENA/VASP family member EVL, the guanine nucleotide exchange factor GEF‐H1 and the adaptor protein DOCK2 corroborates a link between ADAP‐mediated integrin regulation and the cytoskeleton.  相似文献   

5.
Identification of components present in biological complexes requires their purification to near homogeneity. Methods of purification vary from protein to protein, making it impossible to design a general purification strategy valid for all cases. We have developed the tandem affinity purification (TAP) method as a tool that allows rapid purification under native conditions of complexes, even when expressed at their natural level. Prior knowledge of complex composition or function is not required. The TAP method requires fusion of the TAP tag, either N- or C-terminally, to the target protein of interest. Starting from a relatively small number of cells, active macromolecular complexes can be isolated and used for multiple applications. Variations of the method to specifically purify complexes containing two given components or to subtract undesired complexes can easily be implemented. The TAP method was initially developed in yeast but can be successfully adapted to various organisms. Its simplicity, high yield, and wide applicability make the TAP method a very useful procedure for protein purification and proteome exploration.  相似文献   

6.
An expression‐uncoupled tandem affinity purification assay is introduced which differs from the standard TAP assay by uncoupling the expression of the TAP‐bait protein from the target cells. Here, the TAP‐tagged bait protein is expressed in Escherichia coli and purified. The two concatenated purification steps of the classical TAP are performed after addition of the purified bait to brain tissue homogenates, cell and nuclear extracts. Without prior genetic manipulation of the target, upscaling, free choice of cell compartments and avoidance of expression triggered heat shock responses could be achieved in one go. By the strategy of separating bait expression from the prey protein environment numerous established, mostly tissue‐specific binding partners of the protein kinase A catalytic subunit Cβ1 were identified, including interactions in binary, ternary and quaternary complexes. In addition, the previously unknown small molecule inhibitor‐dependent interaction of Cβ1 with the cell cycle and apoptosis regulatory protein‐1 was verified. The uncoupled tandem affinity purification procedure presented here expands the application range of the in vivo TAP assay and may serve as a simple strategy for identifying cell‐ and tissue‐specific protein complexes.  相似文献   

7.
8.
A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification1. Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast2,3 but more recently has been adapted to use in mammalian cells4-8.As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E9,10.The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation10. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence8. To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter.Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function.  相似文献   

9.
Tandem affinity purification (TAP) is a generic two-step affinity purification protocol that enables the isolation of protein complexes under close-to-physiological conditions for subsequent analysis by mass spectrometry. Although TAP was instrumental in elucidating the yeast cellular machinery, in mammalian cells the method suffers from a low overall yield. We designed several dual-affinity tags optimized for use in mammalian cells and compared the efficiency of each tag to the conventional TAP tag. A tag based on protein G and the streptavidin-binding peptide (GS-TAP) resulted in a tenfold increase in protein-complex yield and improved the specificity of the procedure. This allows purification of protein complexes that were hitherto not amenable to TAP and use of less starting material, leading to higher success rates and enabling systematic interaction proteomics projects. Using the well-characterized Ku70-Ku80 protein complex as an example, we identified both core elements as well as new candidate effectors.  相似文献   

10.
Determining the localization, binding partners, and secondary modifications of individual proteins is crucial for understanding protein function. Several tags have been constructed for protein localization or purification under either native or denaturing conditions, but few tags permit all three simultaneously. Here, we describe a multifunctional tandem affinity purification (MAP) method that is both highly efficient and enables protein visualization. The MAP tag utilizes affinity tags inserted into an exposed surface loop of mVenus offering two advantages: (1) mVenus fluorescence can be used for protein localization or FACS-based selection of cell lines; and (2) spatial separation of the affinity tags from the protein results in high recovery and reduced variability between proteins. MAP purification was highly efficient in multiple organisms for all proteins tested. As a test case, MAP combined with liquid chromatography-tandem MS identified known and new candidate binding partners and modifications of the kinase Plk1. Thus the MAP tag is a new powerful tool for determining protein modification, localization, and interactions.  相似文献   

11.
We describe a modification of the tandem affinity purification method for purification and analysis of multiprotein complexes, termed here DEF‐TAP (for differential elution fractionation after tandem affinity purification). Its essential new feature is the use for last purification step of 6×His‐Ni++ interaction, which is resistant to a variety of harsh washing conditions, including high ionic strength and the presence of organic solvents. This allows us to use various fractionation schemes before the protease digestion, which is expected to improve the coverage of the analyzed protein mixture and also to provide an additional insight into the structure of the purified macromolecular complex and the nature of protein–protein interactions involved. We illustrate our new approach by analysis of soluble nuclear complexes containing histone H4 purified from HeLa cells. In particular, we observed different fractionation patterns of HAT1 and RbAp46 proteins as compared with RbAp48 protein, all identified as interaction partners of H4 histone. In addition, we report all components of the licensing MCM2‐7 complex and the apoptosis‐related DAXX protein among the interaction partners of the soluble H4. Finally, we show that HAT1 requires N‐terminal tail of H4 for its stable association with this histone.  相似文献   

12.
Li Q  Dai XQ  Shen PY  Cantiello HF  Karpinski E  Chen XZ 《FEBS letters》2004,576(1-2):231-236
The tandem affinity purification (TAP) procedure was initially developed as a tool for rapid purification of native protein complexes expressed at their natural levels in yeast cells. This purification procedure was also applied to study interactions between soluble proteins in mammalian cells. In order to apply this procedure to mammalian membrane proteins, we created a modified TAP tag expression vector and fused with the PKD2 gene, encoding a membrane cation channel protein, polycystin-2, mutated in 15% of autosomal dominant polycystic kidney disease. We generated epithelial Madin-Darby canine kidney cell line stably expressing TAP-tagged polycystin-2, improved the subsequent steps for membrane protein release and stability, and succeeded in purifying this protein. Using patch clamp electrophysiology, we detected specific polycystin-2 channel activities when the purified protein was reconstituted into a lipid bilayer system. Thus, this modified TAP procedure provides a powerful alternative to functionally characterize membrane proteins, such as ion channels, transporters and receptors, using cell-free system derived from mammalian cells.  相似文献   

13.
G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of major therapeutic importance. The identification of GPCR-associated proteins is an important step toward a better understanding of these receptors. However, current methods are not satisfying as only isolated receptor domains (intracellular loops or carboxyl-terminal tails) can be used as "bait." We report here a method based on tandem affinity purification coupled to mass spectrometry that overcomes these limitations as the entire receptor is used to identify protein complexes formed in living mammalian cells. The human MT(1) and MT(2) melatonin receptors were chosen as model GPCRs. Both receptors were tagged with the tandem affinity purification tag at their carboxyl-terminal tails and expressed in human embryonic kidney 293 cells. Receptor solubilization and purification conditions were optimized. The method was validated by the co-purification of G(i) proteins, which are well known GPCR interaction partners but which are difficult to identify with current protein-protein interaction assays. Several new and functionally relevant MT(1)- and MT(2)-associated proteins were identified; some of them were common to both receptors, and others were specific for each subtype. Taken together, our protocol allowed for the first time the purification of GPCR-associated proteins under native conditions in quantities suitable for mass spectrometry analysis.  相似文献   

14.
Drakas R  Prisco M  Baserga R 《Proteomics》2005,5(1):132-137
The tandem affinity purification (TAP) tag technique has been used with success to identify under nondenaturing conditions protein complexes in yeast. The technique can be used in mammalian cells, but we found that the original technique does not yield enough recovery for the identification of proteins when mammalian cells growing in monolayer have to be used. We present here a modified TAP tag technique that allows sufficient recovery of proteins from mouse fibroblasts growing in monolayer cultures. The recovery allows protein identification by mass spectrometry.  相似文献   

15.
We developed a method for efficient chromosome tagging in Pichia pastoris, using a useful tandem affinity purification (TAP) tag. The TAP tag, designated and used here as the THF tag, contains a thrombin protease cleavage site for removal of the TAP tag and a hexahistidine sequence (6× His) followed by three copies of the FLAG sequence (3× FLAG) for affinity purification. Using this method, THF-tagged RNA polymerases I, II, and III were successfully purified from P. pastoris. The method also enabled us to purify the tagged RNA polymerase II on a large scale, for its crystallization and preliminary X-ray crystallographic analysis. The method described here will be widely useful for the rapid and large-scale preparation of crystallization grade eukaryotic multi-subunit protein complexes.  相似文献   

16.
A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This 'CHH' MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2-Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.  相似文献   

17.
Li Y 《Biotechnology letters》2011,33(8):1487-1499
Tandem affinity purification (TAP) is a methodology for the isolation of protein complexes from endogenous sources. It involves incorporation of a dual-affinity tag into the protein of interest and introduction of the construct into desired cell lines or organisms. Using the two affinity handles, the protein complex assembled under physiological conditions, which contains the tagged target protein and its interacting partners, can be isolated by a sequential purification scheme. Compared with single-step purification, TAP greatly reduces non-specific background and isolates protein complexes with higher purity. TAP-based protein retrieval plus mass spectrometry-based analysis has become a standard approach for identification and characterization of multi-protein complexes. The present article gives an overview of the TAP method, with a focus on its key feature—the dual-affinity tag. In addition, the application of this technology in various systems is briefly discussed.  相似文献   

18.
19.
肠出血性大肠杆菌O157∶H7是一种重要的致病菌,加深其致病机理的基础研究将为相关疫苗研究及疾病控制等提供新的思路和依据.串联亲和纯化(TAP)技术是最近发展的分离纯化天然状态蛋白质复合物进而研究蛋白质相互作用的新方法.用我们自己构建的原核表达串联亲和标签载体,在大肠杆菌O157∶H7中表达了标签融合蛋白GroEL-TAP,建立了非变性条件下制备蛋白复合物的方法,并且对串联亲和纯化过程中的相关实验条件进行了探索和优化,最终得到了高纯度的GroEL-TAP与天然GroEL形成的嵌合型多聚体复合物.这表明我们建立的串联亲和纯化技术能高度特异地纯化靶蛋白参与形成的复合物,为后续寻找O157∶H7中毒力蛋白参与形成的复合物奠定了实验基础.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号