首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of habitat fragmentation on the species distributions, guild membership, and community structure of old-field insects using a fine-scale experimental approach. A continuous 1-ha goldenrod field was fragmented into four treatments that varied in both patch size and degree of isolation. Each treatment was replicated four times and arranged in a Latin square design. Canopy insects in fragmented patches were sampled with sweep nets during early and late summer 1995. The species richness of insects was significantly lower in fragmented than in unfragmented treatments during July, but was similar among treatments in September. Overall community abundance showed no treatment effect during either month. We also found significant row and column effects, suggesting there was spatial heterogeneity in species richness and abundance apart from treatment effects. Differences in species richness during July were primarily due to the loss of rare species in highly fragmented plots. Overall abundance was less responsive to community change because deletions of rare species in fragmented areas were not detected in abundance analyses. Four feeding guilds showed different responses to fragmentation: the species richness of sucking herbivores and the abundance of parasitoids were significantly reduced by fragmentation but predators and chewing herbivores were largely unaffected. Analyses of a subset of individual species within guilds suggest that the greater effects of fragmentation on sucking herbivores and parasitoids may be due to the degree of habitat specificity of guild members. The effects of small-scale habitat fragmentation were therefore detectable at the level of community, guild, and individual species. Changes in species richness, guild structure and species distributions were likely due to differential effects of habitat alteration on individual movements and patch selection rather than dispersal or demographic change. Nonetheless, the selective loss of rare species, differential guild effects and changes in species occupancy that we found in this small-scale experiment are also factors that are likely to operate in fragmented habitats over broader spatial scales. Received: 11 May 1998 / Accepted: 27 September 1998  相似文献   

2.
1. The creation or severe disturbance of habitat patches is generally followed by a phase of community (re)assembly. After such an event, the trajectory of community assembly in habitat patches may be highly variable because of stochasticity during the dispersal and colonization process. Conversely, assembly patterns may also be deterministic if communities are shaped by prevalent environmental conditions in the habitat patches (species sorting), or by systematic differences in the dispersal capacities of species. 2. In this study, we investigated the pattern of community assembly of zooplankton species in 25 newly created ponds at 13 different sites in Flanders (Belgium). Over a period of three consecutive years, we assessed at what rate and with what frequency species of the regional species pool colonized the newly created ponds. We also studied the development of community structure over time and tested whether the dynamics were consistent across different ponds at the different locations. In addition, we characterized the dynamics of metacommunity features, such as alpha, beta and gamma diversity in clusters of ponds. 3. Even within the first year after their creation, the new ponds were rapidly colonized by a small subset of species from the regional species pool (Daphnia obtusa, Chydorus sphaericus and Simocephalus vetulus). These species dominated the cladoceran assemblages during the subsequent years. Other species in the regional species pools were only sporadically able to colonize ponds. 4. During the entire study period, we observed no significant shifts in species lists or in the occurrences of species among years. The low incidence of the majority of species may be the result of dispersal limitation or the failure of immigrants to establish due to priority effects exerted by the first colonizers. There was, nevertheless, a consistent change in the relative abundance of species, which was most probably mediated by differences in the hatching time among species influencing species composition in the first year. 5. In contrast to expectations, we observed no increase in average alpha diversity (local species richness) and gamma diversity (total richness of entire pond clusters) during the course of the study period. Beta diversity was relatively low from the beginning and remained constant throughout the study period. These deterministic patterns can mainly be attributed to the dominance of the three first colonizing species and the low success rate of other species in colonizing the ponds.  相似文献   

3.
The evidence for species diversity effects on ecosystem functions is mainly based on studies not explicitly addressing local or regional processes regulating coexistence or the importance of community structure in terms of species evenness. In experimental communities of marine benthic microalgae, we altered the successional stages and thus the strength of local species interactions by manipulating rates of dispersal and disturbance. The treatments altered realized species richness, evenness and community biomass. For species richness, dispersal mattered only at high disturbance rates; when opening new space, dispersal led to maximized richness at intermediate dispersal rates. Evenness, in contrast, decreased with dispersal at low or no disturbance, i.e. at late successional stages. Community biomass showed a non-linear hump-shaped response to increasing dispersal at all disturbance levels. We found a positive correlation between richness and biomass at early succession, and a strong negative correlation between evenness and biomass at late succession. In early succession both community biomass and richness depend directly on dispersal from the regional pool, whereas the late successional pattern shows that if interactions allow the most productive species to become dominant, diverting resources from this species (i.e. higher evenness) reduces production. Our study emphasizes the difference in biodiversity–function relationships over time, as different mechanisms contribute to the regulation of richness and evenness in early and late successional stages.  相似文献   

4.
《Oikos》2003,102(2):427-432
Using a habitat templet model, we predict that the productivity (total biomass) of plots within a plant community may be positively, negatively or not at all related to variation in the number of species per plot, depending on successional stage (time since major disturbance) and habitat carrying capacity (reflecting the total resource supplying power of the habitat). For plots of a given size, a positive relationship between productivity and species richness is predicted in recently disturbed habitats because local neighbourhoods here will have been assembled largely stochastically, usually from a pool of available species with a right‐skewed size frequency distribution. Hence, in the earliest stages of succession, plots will have relatively high total biomass only if they contain at least some of the relatively uncommon larger species which will, in turn, be more likely in those neighbourhoods that contain more species (the sampling effect). Among these will also be some of the more common smaller species; hence, these high biomass, species‐rich plots should have relatively low species evenness, in contrast to what is predicted under effects involving species complementarity. In late succession, the plots with high total biomass will still be those that contain relatively large species but these plots will now contain relatively few species owing to increased competitive exclusion over time (the competitive dominance effect). In intermediate stages of succession, no relationship between plot productivity and species richness is predicted because the opposing sampling and competitive dominance effects cancel each other out. We predict that the intensity of both the sampling and competitive dominance effects on the productivity/species richness relationship will decrease with decreasing habitat carrying capacity (e.g. decreasing substrate fertility) owing to the inherently lower variance in between‐plot productivity that is predicted for more resource‐impoverished habitats.  相似文献   

5.
beta多样性反映了群落间物种组成的差异, 是生物多样性研究的热点之一。本研究通过对云南元江干热河谷41个植物群落样方进行调查, 用Jaccard相异系数表征物种beta多样性, 用样方之间的最近谱系距离(mean nearest taxon distance, MNTD)及平均谱系距离(mean pairwise distance, MPD)表征谱系beta多样性, 采用基于距离矩阵的多元回归和方差分解方法, 探讨了该区域干热河谷典型植物群落的物种beta多样性和谱系beta多样性与样方间环境差异(主要是气候)及地理距离之间的关系。结果表明: (1)群落间的地理距离和年平均温度差异对干热河谷植物群落的物种beta多样性和谱系beta多样性有显著影响; (2)地理距离对物种beta多样性和MNTD的影响最大; 地理距离和年平均温度差异对MPD的影响均较大; (3)样方间年平均温度与年平均降水量的差异和地理距离能够解释群落间beta多样性及谱系beta多样性11-13%的变异。以上结果表明, 生态位分化和扩散限制对该地区植物群落的beta多样性均有显著影响, 其中扩散限制的影响可能更大。此外, 人类活动等其他因素也很可能对元江干热河谷的群落组成具有非常重要的影响。  相似文献   

6.
A Nothofagus-dominated rainforest in eastern Fiordland, New Zealand, was sampled by shoot frequency in contiguous 1 x 1 m quadrats, along a topologically-circular transect. The data were analysed at five scales up to 5 x 1 m, to search for assembly rules, i.e., generalised restrictions on species co- occurrences. There was no evidence of niche limitation in terms of the whole community, at any scale examined. Rather, variance in species richness was greater than expected from a null model, suggesting environmental heterogeneity. This conclusion was confirmed by using a patch-model. Guild structure was examined in terms of synusiae, based on vertical stratification. The proportion of species in a quadrat that were from the Herb guild was significantly more constant than expected under the null model. However, using a patch-model this effect was reduced, and no longer significant. This suggests pools of species adapted to different micro- environments, but with parallel guild composition. Liane guild proportions were more variable than predicted by the null model; although this effect was not significant, it parallels reports from other South Island forests. The work confirms conclusions from previous work, that plant assembly rules are to be found only at small spatial scales. Processes leading to high and low variance in species richness and in guild proportions are discussed. Selection of a uniform site in the present work, and use of a patch-model, make it less likely that effects are due to environmental or historical effects. The use of guild proportionality as the criterion eliminates the effect of limitation on the number of individuals that can co-occur locally.  相似文献   

7.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

8.
To assess potential effects of seed limitation, characteristics of invader species and characteristics of established plant communities on recruitment success, we conducted a split-plot experiment factorially combining three weeding treatments corresponding to increasing successional age (regular weeding相似文献   

9.
1.?A fundamental question in ecology is which factors determine species richness. Here, we studied the relative importance of regional species pool and local environmental characteristics in determining local species richness (LSR). Typically, this question has been studied using whole communities or a certain taxonomic group, although including species with widely varying biological traits in the same analysis may hinder the detection of ecologically meaningful patterns. 2.?We studied the question above for whole stream macroinvertebrate community and within functional feeding guilds. We defined the local scale as a riffle site and the regional scale (i.e. representing the regional species pool) as a stream. Such intermediate-sized regional scale is rarely studied in this context. 3.?We sampled altogether 100 sites, ten riffles (local scale) in each of ten streams (regional scale). We used the local-regional richness regression plots to study the overall effect of regional species pool on LSR. Variation partitioning was used to determine the relative importance of regional species pool and local environmental conditions for species richness. 4.?The local-regional richness relationship was mainly linear, suggesting strong species pool effects. Only one guild showed some signs of curvilinearity. However, variation partitioning showed that local environmental characteristics accounted for a larger fraction of variance in LSR than regional species pool. Also, the relative importance of the fractions differed between the whole community and guilds, as well as among guilds. 5.?This study indicates that the importance of the local and regional processes may vary depending on feeding guild and trophic level. We conclude that both the size of the regional species pool and local habitat characteristics are important in determining LSR of stream macroinvertebrates. Our results are in agreement with recent large-scale studies conducted in highly different study systems and complement the previous findings by showing that the interplay of regional and local factors is also important at intermediate regional scales.  相似文献   

10.
Dispersal is an important factor in plant community assembly, but assembly studies seldom include information on actual dispersal into communities, i.e. the local propagule pool. The aim of this study was to determine which factors influence plant community assembly by focusing on two phases of the assembly process: the dispersal phase and the establishment phase. At 12 study sites in grazed ex-arable fields in Sweden the local plant community was determined and in a 100-m radius around the centre of each site, the regional species pool was measured. The local seed bank and the seed rain was explored to estimate the local propagule pool. Trait-based models were then applied to investigate if species traits (height, seed mass, clonal abilities, specific leaf area and dispersal method) and regional abundance influenced which species from the regional species pool, dispersed to the local community (dispersal phase) and which established (establishment phase). Filtering of species during the dispersal phase indicates the effect of seed limitation while filtering during the establishment phase indicates microsite limitation. On average 36% of the regional species pool dispersed to the local sites and of those 78% did establish. Species with enhanced dispersal abilities, e.g. higher regional abundance, smaller seeds and dispersed by cattle, were more likely to disperse to the sites than other species. At half the sites, dispersal was influenced by species height. Species establishment was however mainly unlinked to the traits included in this study. This study underlines the importance of seed limitation in local plant community assembly. It also suggests that without information on species dispersal into a site, it is difficult to distinguish between the influence of dispersal and establishment abilities, and thus seed and microsite limitation, as both can be linked to the same trait.  相似文献   

11.
Örjan  Östman  Jamie M  Kneitel  Jonathan M  Chase 《Oikos》2006,114(2):360-366
Isolated habitats generally have fewer species at local spatial scales than more connected habitats. However, over larger spatial scales, the response of species richness to variation in the degree of isolation is variable. Here, we hypothesized that the effects of habitat isolation on patterns of regional level species richness may depend at least in part on the level of disturbances those habitats receive. We tested this hypothesis in a microcosm experiment using an aquatic community consisting of container dwelling protists and rotifers by manipulating disturbance and dispersal to experimental regions factorially. In disturbed regions, regional species richness was lower in regions with isolated patches compared to regions where patches were experimentally connected by dispersal. A likely mechanism for this result is that dispersal from adjacent undisturbed local patches allowed disturbance-intolerant species a temporary refugia, thereby allowing regional coexistence of disturbance-tolerant and intolerant species. In contrast, without disturbances (and thus no temporal heterogeneity) it is likely that dispersal homogenized communities, leading to overall lower richness with higher dispersal. Our results emphasize the importance of simultaneously considering multiple limiting factors, disturbance and dispersal in this case, as well as the spatial scale of the response, in order to fully understand factors that control biodiversity.  相似文献   

12.
Niche-based and neutral models of community structure posit distinct mechanisms underlying patterns in community structure; correlation between species’ distributions and habitat factors points to niche assembly while spatial pattern independent of habitat suggests neutral assembly via dispersal limitation. The challenge is to disentangle the relative contributions when both processes are operating, and to determine the scales at which each is important. We sampled shoreline plant communities on an island in Lake Michigan, varying the extent and the grain of sampling, and used both distance-based correlation methods and variance partitioning to quantify the proportion of the variation in plant species composition that was attributable to habitat factors and to spatial configuration independent of habitat. Our results were highly scale dependent. We found no distance decay of plant community similarity at the island scale (1−33 km). All of the explained variation (32%) in species composition among samples at this scale was attributed to habitat factors. However, at a site intensively sampled at a smaller scale (5−1,200 m), similarity of species composition did decay with distance. Using a coarse sampling grain (transects), habitat factors explained 40% of the variation, but the purely spatial component explained a comparable 22%. Analyzing plots within transects revealed variation in species composition that was still jointly determined by habitat and spatial factors (18 and 11% of the variance, respectively). For both grain sizes, most of the habitat component was spatially structured, reflecting an abrupt alongshore transition from sandy dunes to cobble beach. Space per se explained more variation in species composition at a second site where the habitat transition was more gradual; here, habitat acted as a less selective filter, allowing the signal of dispersal limitation to be detected more readily. We conclude that both adaptation to specific habitat factors and habitat-independent spatial position indicative of dispersal limitation determine plant species composition in this system. Our results support the prediction that dispersal limitation—a potentially, but not necessarily, neutral driver—is relatively more important at smaller scales.  相似文献   

13.
Plant colonization can be limited by lack of seeds or by factors that reduce establishment. The role of seed limitation in community assembly is being increasingly recognized, but in early primary succession, establishment failure is still considered more important. We studied the factors limiting colonization on the foreland of Coleman Glacier, Washington, USA, to determine the importance of seed and establishment limitation during primary succession. We also evaluated the effects of seed predation, drought, and existing vegetation on establishment. We planted seeds of seven species into plots of four different ages and found evidence that both seed and establishment limitation are strong in early succession. We also found that seed and establishment limitation both remained high in later stages of succession. Seed predation reduced establishment for most species and some evidence suggested that drought and existing vegetation also limit establishment. Because both dispersal and establishment failure restrict colonization in recently exposed habitat, late-seral forest species may have a difficult time migrating upward in response to global climate change. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Restoring small-scale habitat heterogeneity in highly diverse systems, like tropical forests, is a conservation challenge and offers an excellent opportunity to test factors affecting community assembly. We investigated whether (1) the applied nucleation restoration strategy (planting tree islands) resulted in higher habitat heterogeneity than more homogeneous forest restoration approaches, (2) increased heterogeneity resulted in more diverse tree recruitment, and (3) the mean or coefficient of variation of habitat variables best explained tree recruitment. We measured soil nutrients, overstory and understory vegetation structure, and tree recruitment at six sites with three 5- to 7-year-old restoration treatments: control (no planting), planted tree islands, and conventional, mixed-species tree plantations. Canopy openness and soil base saturation were more variable in island treatments than in controls and plantations, whereas most soil nutrients had similar coefficients of variation across treatments, and bare ground was more variable in control plots. Seedling and sapling species density were equivalent in plantations and islands, and were substantially higher than in controls. Species spatial turnover, diversity, and richness were similar in island and plantation treatments. Mean canopy openness, rather than heterogeneity, explained the largest proportion of variance in species density. Our results show that, whereas canopy openness and soil base saturation are more heterogeneous with the applied nucleation restoration strategy, this pattern does not translate into greater tree diversity. The lack of a heterogeneity–diversity relationship is likely due to the fact that recruits respond more strongly to mean resource gradients than variability at this early stage in succession, and that seed dispersal limitation likely reduces the available species pool. Results show that planting tree islands facilitates tree recruitment to a similar degree as intensive plantation-style restoration strategies.  相似文献   

15.
Temperate calcareous grasslands are characterized by high levels of species richness at small spatial scales. Nevertheless, many species from a habitat‐specific regional species pool may be absent from local communities and represent the ‘dark diversity’ of these sites. Here we investigate dry calcareous grasslands in northern Europe to determine what proportion of the habitat‐specific species pool is realized at small scales (i.e. how the community completeness varies) and which mechanisms may be contributing to the relative sizes of the observed and dark diversity. We test whether the absence of particular species in potentially suitable grassland sites is a consequence of dispersal limitation and/or a low ability to tolerate stress (e.g. drought and grazing). We analysed a total of 1223 vegetation plots (1 × 1 m) from dry calcareous grasslands in Sweden, Estonia and western Russia. The species co‐occurrence approach was used to estimate the dark diversity for each plot. We calculated the maximum dispersal distance for each of the 291 species in our dataset by using simple plant traits (dispersal syndrome, growth form and seed characteristics). Large seed size was used as proxy for small seed number; tall plant height and low S‐strategy type scores were used to characterise low stress‐tolerance. Levels of small‐scale community completeness were relatively low (more species were absent than present) and varied between the grasslands in different geographic areas. Species in the dark diversity were generally characterized by shorter dispersal distances and greater seed weight (fewer seeds) than species in the observed diversity. Species within the dark diversity were generally taller and had a lower tolerance of stressful conditions. We conclude that, even if temperate grasslands have high levels of small‐scale plant diversity, the majority of potentially suitable species in the regional species pool may be absent as a result of dispersal limitation and low stress‐tolerance.  相似文献   

16.
Abstract. The community structure of a species-rich grassland was investigated at a small spatial scale (0.001 m2), to determine whether evidence suggesting assembly rules could be found in temporal or spatial variation in either species richness or guild proportions. The community was alvar limestone grassland on the island of Öland, Sweden. Three sites were sampled: two lightly grazed, the other recently ungrazed. Plots with and without fertilizer were compared. Evidence was sought for restriction on the ability of species to co-occur within a limited spatial area. Restriction due to a limited number of niches available,‘niche limitation’, could be manifest as lower variance in quadrat richness than expected under a null model (i.e. RVr, the ratio of observed: expected variance in richness, would be < 1.0). In several cases, RVr values were significantly < 1.0, even using a patch model to allow for possible spatial variation in the environment. Low RVr values were found only at the smallest square quadrat size, 10 cm2. On Fertilized plots in the years immediately after application of fertilizer, low RVr could not be demonstrated. Explanations of low RVr other than niche limitation are considered, such as environmental heterogeneity (present and/or historical) and limitations to the co-occurrence of individual plant modules. Assembly rules based on guild membership were sought by looking at the variance across quadrats in the proportions of species from morphological guilds. An assembly rule would be seen as relatively constant proportion, estimated via RVgp, the ratio of observed: expected variances in guild proportions. Significant guild proportionality was found in some cases. There was no evidence of guild proportionality in the years after the application of fertilizer. The significant effects in RVr were more numerous than expected on a random basis, though not observed in every site in every year. Similar trends were seen in RVgp. At the space/time scales examined, the species in a plant community may be constrained by assembly rules only intermittently, e.g. when resources are more limiting (Wiens 1977). Under this concept, when competition is relaxed, such as following fertilizer application, there is a temporary microhabitat ‘waterhole’ in which more species can coexist, and the assembly rules break down, at least temporarily whilst the species composition adjusts. There was some indication of a return to more deterministic community structure four years after fertilization commenced. Variants of van der Maarel's Carousel model were tested. A Niche-limited Carousel Model (i.e. a model in which there is some limitation in the number of species that can occupy a microsite) would imply restricted variation in richness through time for a single quadrat (temporal RVr). Overall differences between years in species richness were demonstrated, and their effect removed; after this adjustment there was support for the Niche-limited Carousel Model. The extent of this limitation varied between sites. There were also consistent differences between quadrats in species richness. There was little evidence for constancy of guild proportions through time. The site that showed the strongest community structure in time and space, least year-to-year variation in mean species richness, and least response to fertilizer perturbation, is that on the shallowest soil. Possibly the thin soil results in greater resource limitation, supporting suggestions that assembly rules are stronger when resources are more limited.  相似文献   

17.
Competitive exclusion and habitat filtering influence community assembly, but ecologists and evolutionary biologists have not reached consensus on how to quantify patterns that would reveal the action of these processes. Currently, at least 22 α‐diversity and 10 β‐diversity metrics of community phylogenetic structure can be combined with nine null models (eight for β‐diversity metrics), providing 278 potentially distinct approaches to test for phylogenetic clustering and overdispersion. Selecting the appropriate approach for a study is daunting. First, we describe similarities among metrics and null models across variance in phylogeny size and shape, species abundance, and species richness. Second, we develop spatially explicit, individual‐based simulations of neutral, competitive exclusion, or habitat filtering community assembly, and quantify the performance (type I and II error rates) of all 278 metric and null model combinations against each assembly process. Many α‐diversity metrics and null models are at least functionally equivalent, reducing the number of truly unique metrics to 12 and the number of unique metric + null model combinations to 72. An even smaller subset of metric and null model combinations showed robust statistical performance. For α‐diversity metrics, phylogenetic diversity and mean nearest taxon distance were best able to detect habitat filtering, while mean pairwise phylogenetic distance‐based metrics were best able to detect competitive exclusion. Overall, β‐diversity metrics tended to have greater power to detect habitat filtering and competitive exclusion than α‐diversity metrics, but had higher type 1 error in some cases. Across both α‐ and β‐diversity metrics, null model selection affected type I error rates more than metric selection. A null model that maintained species richness, and approximately maintained species occurrence frequency and abundance across sites, exhibited low type I and II error rates. This regional null model simulates neutral dispersal of individuals into local communities by sampling from a regional species pool. We introduce a flexible new R package, metricTester, to facilitate robust analyses of method performance.  相似文献   

18.
The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta‐community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine‐resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.  相似文献   

19.
An observed species–area relationship (SAR) in assemblages of oribatid mites inhabiting natural canopy habitats (suspended soils) led to an experimental investigation of how patch size, height in canopy and moisture influence the species richness, abundance and community composition of arboreal oribatid mites. Colonisation by oribatid mites on 90 artificial canopy habitats (ACHs) of three sizes placed at each of three heights on the trunks of ten western redcedar trees was recorded over a 1‐year period. Fifty‐nine oribatid mite species colonised the ACHs, and richness increased with the moisture content and size of the habitat patch. Oribatid mite species richness and abundance, and ACH moisture content decreased with increasing ACH height in the canopy. Patterns in the species richness and community composition of ACHs were non‐random and demonstrated a significant nested pattern. Correlations of patch size, canopy height and moisture content with community nestedness suggest that species‐specific environmental tolerances combined with the differential dispersal abilities of species contributed to the non‐random patterns of composition in these habitats. In line with the prediction that niche‐selection filters out species from the regional pool that cannot tolerate environmental harshness, moisture‐stressed ACHs in the high canopy had lower community variability than ACHs in the lower canopy. Colonising source pools to ACHs were almost exclusively naturally‐occurring canopy sources, but low levels of colonisation from the forest floor were apparent at low heights within the ACH system. We conclude that stochastic dispersal dynamics within the canopy are crucial to understanding oribatid mite community structure in suspended soils, but that the relative importance of stochastic dispersal assembly may be dependent on a strong deterministic element to the environmental tolerances of individual species which drives non‐random patterns of community assembly.  相似文献   

20.
Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β‐diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species‐sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号