共查询到20条相似文献,搜索用时 15 毫秒
1.
G.T wobble base-pairing in Z-DNA at 1.0 A atomic resolution: the crystal structure of d(CGCGTG). 总被引:9,自引:0,他引:9 下载免费PDF全文
P S Ho C A Frederick G J Quigley G A van der Marel J H van Boom A H Wang A Rich 《The EMBO journal》1985,4(13A):3617-3623
The DNA oligomer d(CGCGTG) crystallizes as a Z-DNA double helix containing two guanine-thymine base pair mismatches of the wobble type. The crystal diffracts to 1 A resolution and the structure has been solved and refined. At this resolution, a large amount of information is revealed about the organization of the water molecules in the lattice generally and more specifically around the wobble base pairs. By comparing this structure with the analogous high resolution structure of d(CGCGCG) we can visualize the structural changes as well as the reorganization of the solvent molecules associated with wobble base pairing. There is only a small distortion of the Z-DNA backbone resulting from introduction of the GT mismatched base pairs. The water molecules cluster around the wobble base pair taking up all of the hydrogen bonding capabilities of the bases due to wobble pairing. These bridging water molecules serve to stabilize the base-base interaction and, thus, may be generally important for base mispairing either in DNA or in RNA molecules. 相似文献
2.
The self-complementary dodecamer d(CGCAAATTTGCG) crystallizes as a double helix of the B form and manifests a Raman spectrum with features not observed in Raman spectra of either DNA solutions or wet DNA fibers. A number of Raman bands are assigned to specific nucleoside sugar and phosphodiester conformations associated with this model B-DNA crystal structure. The Raman bands proposed as markers of the crystalline B-DNA structure are compared and contrasted with previously proposed markers of Z-DNA and A-DNA crystals. The results indicate that the three canonical forms of DNA can be readily distinguished by Raman spectroscopy. However, unlike Z-DNA and A-DNA, which retain their characteristic Raman fingerprints in aqueous solution, the B-DNA Raman spectrum is not completely conserved between crystal and solution states. The Raman spectra reveal greater heterogeneity of nucleoside conformations (sugar puckers) in the DNA molecules of the crystal structure than in those of the solution structure. The results are consistent with conversion of one-third of the dG residues from the C2'-endo/anti conformation in the solution structure to another conformation, deduced to be C1'-exo/anti, in the crystal. The dodecamer crystal also exhibits unusually broad Raman bands at 790 and 820 cm-1, associated with the geometry of the phosphodiester backbone and indicating a wider range of (alpha, zeta) backbone torsion angles in the crystal than in the solution structure. The results suggest that backbone torsion angles in the CGC and GCG sequences, which flank the central AAATTT sequence, are significantly different for crystal and solution structures, the former containing the greater diversity.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Triple helical polynucleotidic structures: sugar conformations determined by FTIR spectroscopy. 总被引:5,自引:0,他引:5
J Liquier P Coffinier M Firon E Taillandier 《Journal of biomolecular structure & dynamics》1991,9(3):437-445
Fourier Transform Infrared Spectra of triple stranded polynucleotides containing homopurine dA or rA and homopyrimidine dT or rU strands have been obtained in H2O and D2O solutions as well as in hydrated films at various relative humidities. The spectra are interpreted by comparison with those of double stranded helixes with identical base and sugar composition. The study of the spectral domain corresponding to in-plane double bond stretching vibrations of the bases shows that whatever the initial duplex characterized by a different IR spectrum (A family form poly rA.poly rU, heternomous form poly rA.poly dT, B family form poly dA.poly dT), the triplexes present a similar IR spectrum reflecting similar base interactions. A particular attention is devoted to the 950-800 cm-1 region which contains marker bands of the sugar conformation in the nucleic acids. In solution the existence of only N (C3'endo-A family form) type of sugar pucker is detected in poly rU.poly rA.poly rU and poly dt.poly rA.poly rU. On the contrary absorption bands characteristic of both N (C3'endo-A family form) and S (C2'endo-B family form) type sugars are detected for poly rU.poly rA.poly dT, poly rU.poly dA.poly dT and poly dT.poly rA.poly dT. Finally mainly S (C2'endo-B family form) type sugars are observed in poly dT.poly dA.poly dT. 相似文献
4.
Ohishi H Tsukamoto K Hiyama Y Maezaki N Tanaka T Ishida T 《Biochemical and biophysical research communications》2006,348(3):794-798
We succeeded in the crystallization of d(CGCGCG)2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2Fo-Fc map was much clear and easily traced. It is the first time monoamine co-crystallizes with d(CGCGCG)2. However, methylamine was not found from the complex crystal of d(CGCGCG)2 and methylamine. Five Mg ions were found around d(CGCGCG)2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg2+. DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG)2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this. 相似文献
5.
Ohishi H Tozuka Y Da-Yang Z Ishida T Nakatani K 《Biochemical and biophysical research communications》2007,358(1):24-28
Several crystal structure analyses of complexes of synthetic polyamine compounds, including N(1)-(2-(2-aminoethylamino))ethyl)ethane-1,2-diamine PA(222) and N(1)-(2-(2-(2-aminoethylamino)ethylamino)ethyl)ethane-1,2-diamine PA(2222), and left-handed Z-DNA d(CGCGCG)(2) have been reported. However, until now, there have been no examples of naturally occurring polyamines bound to the minor groove of the left-handed Z-DNA of d(CGCGCG)(2) molecule. We have found that spermidine, a natural polyamine, is connected to the minor groove of left-handed Z-DNA of d(CGCGCG)(2) molecule in a crystalline complex grown at 10 degrees C. The electron density of the DNA molecule was clear enough to determine that the spermidine was connected in the minor groove of two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2). This is the first example that a spermidine molecule can form a bridge conformation between two symmetry related molecules of left-handed Z-DNA d(CGCGCG)(2) in the minor groove. 相似文献
6.
Poly d(A-C).poly d(G-T) structures have been studied in solution by Raman spectroscopy, in presence of Na+, Mn2+ and Ni2+ counterions. Increase of the Na+ concentration or addition of Mn2+ ions up to 1M MnCl2 does not modify the B geometry of the polynucleotide. On the contrary, in conditions of low water activity (4M NaCl), the presence of small amounts of nickel ions (65 mM) induces a left-handed geometry of the DNA. The shift of the guanine line located at 682 cm-1 in B form to 622 cm-1 reflects unambiguously the C2'-endo/anti-greater than C3'-endo/syn reorientation of the deoxyribose-purine entities. Moreover modifications in the phosphate backbone lines indicate that the polymer is in a Z conformation. New or displaced lines corresponding to adenosine vibrations are correlated with the left-handed structure. An interaction of the Ni2+ ions specifically with the N7 site of purines, combined with a low water activity is necessary to promote the B-greater than Z transition. 相似文献
7.
Comparison of the solution and crystal conformations of (G + C)-rich fragments of DNA. 总被引:1,自引:0,他引:1 下载免费PDF全文
M Vorlícková J A Subirana J Chládková I Tejralová T Huynh-Dinh L Arnold J Kypr 《Biophysical journal》1996,71(3):1530-1538
DNA fragments crystallize in an unpredictable manner, and relationships between their crystal and solution conformations still are not known. We have studied, using circular dichroism spectroscopy, solution conformations of (G + C)-rich DNA fragments, the crystal structures of which were solved in the laboratory of one of the present authors. In aqueous trifluorethanol (TFE) solutions, all of the examined oligonucleotides adopted the same type of double helix as in the crystal. Specifically, the dodecamer d(CCCCCGCGGGGG) crystalized as A-DNA and isomerized into A-DNA at high TFE concentrations. On the other hand, the hexamer d(CCGCGG) crystallized in Z-form containing tilted base pairs, and high TFE concentrations cooperatively transformed it into the same Z-form as adopted by the RNA hexamer r(CGCGCG), although d(CCGCGG) could isomerize into Z-DNA in the NaCl + NiCl2) aqueous solution. The fragments crystallizing as B-DNA remained B-DNA, regardless of the solution conditions, unless they denatured or aggregated. Effects on the oligonucleotide conformation of 2-methyl-2,4-pentanediol and other crystallization agents were also studied. 2-Methyl-2,4-pentanediol induced the same conformational transitions as TFE but, in addition, caused an oligonucleotide condensation that was also promoted by the other crystallization agents. The present results indicate that the crystal double helices of DNA are stable in aqueous TFE rather than aqueous solution. 相似文献
8.
The interactions of ruthenium hexaammine with Z-DNA: crystal structure of a Ru(NH3)6+3 salt of d(CGCGCG) at 1.2 A resolution 总被引:3,自引:0,他引:3
P S Ho C A Frederick D Saal A H Wang A Rich 《Journal of biomolecular structure & dynamics》1987,4(4):521-534
A crystal of d(CGCGCG) in the Z-DNA lattice was soaked with ruthenium(III) hexaammine and its structure refined at 1.2 A resolution. Three unique metal complexes were found absorbed to each hexamer duplex. In addition, two symmetry-related binding sites were located, yielding a total of five ruthenium complexes bound to each d(CGCGCG) duplex. One unique site and its symmetry related site are nearly identical to the binding site of cobalt(III) hexaammine on Z-DNA. At that position, the metal complex bridges the convex surfaces of two adjacent Z-DNA strands by hydrogen bonds to the N7 and O6 functional groups of the guanine bases. The remaining three ruthenium three ruthenium(III) hexaammine binding sites are not present in the cobalt(III) hexaammine Z-DNA structure. Of these, two are related by symmetry and span the gap between the convex outer surface of one Z-DNA strand and the helical groove crevice of a neighboring strand. The third ruthenium site has no symmetry mate and involves interactions with only the deep groove. In this interaction, the metal complex hydrogen bonds to both the phosphate backbone and to a set of primary shell water molecules that extend the hydrogen bonding potential of the deep groove crevice out to the surface of the molecule. Solution studies comparing the circular dichroism spectra of low salt poly(dG-dC).poly(dG-dC) samples in the presence of ruthenium(III) and cobalt(III) hexammine show that the ruthenium complex does stabilize Z-DNA in solution, but not as effectively as the cobalt analogue. This suggests that some of the interactions available for the larger ruthenium complex may not be important for stabilization of the left-handed DNA conformation. 相似文献
9.
Conformational analysis of r(CGCGCG) in aqueous solution: an A-type double helical conformation studied by two-dimensional nuclear Overhauser effect spectroscopy. 总被引:1,自引:3,他引:1 下载免费PDF全文
H P Westerink G A van der Marel J H van Boom C A Haasnoot 《Nucleic acids research》1984,12(10):4323-4338
The conformation of the hexanucleoside pentaphosphate r( CGCGCG ) in aqueous solution was studied by circular dichroism, 1H- and 31P-NMR spectroscopy. The base-, H1'- and H2'-proton resonances were assigned by means of 2D-NOE spectroscopy. The base- and H1'-proton chemical shifts were studied as a function of temperature. Proton-proton distances are computed in A- and A'-RNA as well as in A-, B- and Z-DNA. A qualitative interpretation of the observed 2D-NOE intensities shows that r( CGCGCG ) adopts a regular A-type double helical conformation under our experimental conditions. The CD- and 31P-NMR experiments described in this paper are in agreement with this structure both under low- and high-salt conditions. 相似文献
10.
Conformational properties of the G.G mismatch in d(CGCGAATTGGCG)2 determined by NMR. 总被引:3,自引:0,他引:3
The conformational properties of the DNA duplex d(CGCGAATTGGCG)2, which contains two noncomplementary G.G base pairs, have been examined in aqueous solution by 1H and 31P NMR as a function of temperature. The G.G mismatch is highly destabilizing, with a Tm value 35 K below that observed for the native EcoRI dodecamer. The dodecamer appears symmetric in the NMR spectra and exists largely as an average B-type DNA conformation. However, the 1H and 31P NMR spectra give evidence of considerable conformational heterogeneity at the mismatched nucleotides and their nearest neighbors, which increases with increasing temperature. There is no evidence for a significant population of the syn purine conformation. The imino protons of the mispaired bases G4 and G9 are degenerate, resonate at high field, and exchange readily with solvent. These results indicate that the mispaired bases are only weakly hydrogen-bonded and are only partially stacked into the helix. On raising the temperature, the duplex shows increasing exchange between two or more conformations originating from the mismatch sites. However, these additional conformations maintain their Watson-Crick hydrogen bonding. The increase in chemical exchange is consistent with a quasimelting process for which the G.G sites provide local nuclei. Extensive modeling studies by dynamic annealing have confirmed that the G(anti).G(anti) conformation is favored and that the mispairs are poorly stacked within the helix. The results explain both the poor thermal stability and low hypochromicity of this duplex. 相似文献
11.
The synthetic deoxyoctanucleotide d(G-G-G-G-T-C-C-C) crystallizes as an A-type DNA double helix containing two adjacent G . T base-pair mismatches. The structure has been refined to an R-factor of 14% at 2.1 A resolution with 104 solvent molecules located. The two G . T mismatches adopt the "wobble" form of base-pairing. The mismatched bases are linked by a network of water molecules interacting with the exposed functional groups in both the major and minor grooves. The presence of two mispaired bases in the octamer has surprisingly little effect on the global structure of the helix or the backbone and glycosidic torsional angles. Base stacking around the mismatch is perturbed, but the central G-T step shows particularly good base overlap, which may contribute to the relatively high stability of this oligomer. 相似文献
12.
R G Brennan E Westhof M Sundaralingam 《Journal of biomolecular structure & dynamics》1986,3(4):649-665
The complex between cobalt hexammine and decadeoxyoligomer d(CGTACGTACG) crystallizes into the space group P65 with unit cell constants a = b = 17.93A, and c = 43.41A. The molecules have the helix axis coincident with the crystal c-axis. The decamers stack on top of each other and form a quasi-continuous helix. The structure is disordered. The asymmetric unit is a dimer (pPyr-pPur)2 with each base pair 60% of the time a C-G and 40% of the time a T-A. Restrainted least-squares refinement led to an R-factor of 25.5% for 506 observed reflections above the two-sigma level. The structure was found to have one strand in the ZI-conformation and the other in the ZII-conformation. The cobalt hexammine binds to two ZII-chains of symmetrically related molecules. On one ZII chain, two ammonia molecules of the cobalt hexammine bind to the N7 nitrogen and 06 oxygen atoms of the guanine bases and a third ammonia to the phosphate anionic oxygen atom of the preceding pyrimidine base, resulting in an "external" binding mode. On the other ZII chain, one ammonia molecule of the cobalt hexammine binds only to the anionic oxygens of the phosphate group of the guanine bases, leading to an "internal" binding mode. Thus, the basis of the stabilization of Z-DNA by [Co(NH3)6]3+ is its binding to only guanine nucleotides. It is surmised that statistical disordering of deoxyoligonucleotide structures which take a Z conformation, depends on the length of the oligomer. That is to say, octamers and decamers (which cannot use an integral number of molecules for a 12 base pair repeat) form disordered structures whereas tetramers and hexamers form well ordered structures. 相似文献
13.
Crystal structure of a Z-DNA hexamer d(CGCICG) at 1.7 A resolution: inosine.cytidine base-pairing, and comparison with other Z-DNA structures. 下载免费PDF全文
The crystal structure of the deoxyhexamer, d(CGCICG), has been determined and refined to a resolution of 1.7A. The DNA hexamer crystallises in space group P2(1)2(1)2(1) with unit cell dimensions of a = 18.412 +/- .017 A, b = 30.485 +/- .036A, and c = 43.318 +/- .024 A. The structure has been solved by rotation and translation searches and refined to an R-factor of 0.148 using 2678 unique reflections greater than 1.0 sigma (F) between 10.0-1.7 A resolution. Although the crystal parameters are similar to several previously reported Z-DNA hexamers, this inosine containing Z-DNA differs in the relative orientation, position, and crystal packing interactions compared to d(CGCGCG) DNA. Many of these differences in the inosine form of Z-DNA can be explained by crystal packing interactions, which are responsible for distortions of the duplex at different locations. The most noteworthy features of the inosine form of Z-DNA as a result of such distortions are: (1) sugar puckers for the inosines are of C4'-exo type, (2) all phosphates have the Zl conformation, and (3) narrower minor grove and compression along the helical axis compared to d(CGCGCG) DNA. In addition, the substitution of guanosine by inosine appears to have resulted in Watson-Crick type base-pairing between inosine and cytidine with a potential bifurcated hydrogen bond between inosine N1 and cytidine N3 (2.9 A) and O2 (3.3-3.A). 相似文献
14.
The octadeoxyribonucleotide d(CGCICICG) has been crystallized in space group P(6)5(22) with unit cell dimensions of a = b = 31.0 A and c = 43.7 A, and X-ray diffraction data have been collected to 1.5-A resolution. Precession photographs and the self-Patterson function indicate that 12 base pairs of Z-conformation DNA stack along the c-axis, and the double helices pack in a hexagonal array similar to that seen in other crystals of Z-DNA. The structure has been solved by both Patterson deconvolution and molecular replacement methods and refined in space group P(6)5 to an R factor of 0.225 using 2503 unique reflections greater than 3.0 sigma (F). Comparison of the molecules within the hexagonal lattice with highly refined crystal structures of other Z-DNA reveals only minor conformational differences, most notably in the pucker of the deoxyribose of the purine residues. The DNA has multiple occupancy of C:I and C:G base pairs, and C:I base pairs adopt a conformation similar to that of C:G base pairs. 相似文献
15.
Covalent modification of guanine bases in double-stranded DNA. The 1.2-A Z-DNA structure of d(CGCGCG) in the presence of CuCl2 总被引:1,自引:0,他引:1
T F Kagawa B H Geierstanger A H Wang P S Ho 《The Journal of biological chemistry》1991,266(30):20175-20184
We have solved the single crystal structure to 1.2-A resolution of the Z-DNA sequence d(CGCGCG) soaked with copper(II) chloride. This structure allows us to elucidate the structural properties of copper in a model that mimics a physiologically relevant environment. A copper(II) cation was observed to form a covalent coordinate bond to N-7 of each guanine base along the hexamer duplex. The occurrence of copper bound at each site was dependent on the exposure of the bases and the packing of the hexamers in the crystal. The copper at the highest occupied site was observed to form a regular octahedral complex, with four water ligands in the equatorial plane and a fifth water along with N-7 of the purine base at the axial positions. All other copper complexes appear to be variations of this structure. By using the octahedral complex as the prototype for copper(II) binding to guanine bases in the Z-DNA crystal, model structures were built showing that duplex B-DNA can accommodate octahedral copper(II) complexes at the guanine bases as well as copper complexes bridged at adjacent guanine residues by a reactive dioxygen species. The increased susceptibility to oxidative DNA cleavage induced by copper(II) ions in solution of the bases located 5' to one or more adjacent guanine residues can thus be explained in terms of the cation and DNA structures described by these models. 相似文献
16.
Molecular and crystal structure of d(CGCGmo4CG): N4-methoxycytosine.guanine base-pairs in Z-DNA 总被引:1,自引:0,他引:1
L Van Meervelt M H Moore P K Lin D M Brown O Kennard 《Journal of molecular biology》1990,216(3):773-781
The base analogue N4-methoxycytosine (mo4C) is ambivalent in its hydrogen-bonding potential, since it forms stable base-pairs with both adenine and guanine in oligomer duplexes. To investigate the base-pair geometry, the structure of d(CGCGmo4CG) has been determined by single-crystal X-ray diffraction techniques. The d(CGCGmo4CG)2 crystallized in a left-handed double helical structure (Z-type). Refinement using 2559 reflections between 10 and 1.7 A converged with a final R = 0.181 (Rw = 0.130) including 68 solvent molecules. The orthorhombic crystals are in the space group P2(1)2(1)2(1), with cell dimensions a = 18.17 A, b = 30.36 A, c = 43.93 A. The mo4C.G base-pair is of the wobble type, with mo4C in the imino form, and the methoxy group in the syn configuration. 相似文献
17.
Raman spectroscopic elucidation of DNA backbone conformations for poly(dG-dT).poly(dA-dC) and poly(dA-dT).poly(dA-dT) in CsF solution 总被引:3,自引:0,他引:3
Raman spectra have been recorded for poly(dG-dT) · poly(dA-dC) and poly(dA-dT) · poly(dA-dT) in low salt and at high concentrations of CsF. Poly(dG-dT) · poly(dA-dC) shows no change in the 682-cm?1 guanine mode, demonstrating the absence of the Z-structure at high salt. The 790-cm?1 phosphodiester symmetric stretch, however, shifts up 5 cm?1 in 4.3M CsF, suggesting a slight conformational change, associated with ion binding or hydration changes. Poly(dA-dT) · poly(dA-dT) shows an additional broad band at 816 cm?1, attributed to the phosphodiester modes associated with the C3′-endo deoxyribose units in the alternating B-structure. In this case, both the 841- and the 816-cm?1 asymmetric phosphodiester stretches, associated with the C2′- and C3′-endo units, shift down on addition of CsF in a sequential manner. Correlation of this sequence with that previously observed for the two 31P-nmr resonances, establishes that the phosphodiester stretching frequencies depend on the conformation of the 5′-sugar, and not on the 3′-sugar. 相似文献
18.
The x-ray structure of the deoxy oligonucleotide dodecamer d(CGCGTTAACGCG) recently determined in our laboratory shows that the helical parameters of the central TTAA segment are significantly different compared to the central AATT in d(CGCGAATTCGCG). The roll in the central TA step of the T2A2 dodecamer opens towards the minor groove while the AT step of the A2T2 dodecamer opens towards the major groove. Also, the roll angles at the steps 4 and 8 (GT and AC in T2A2) and (GA and TC in A2T2) are in opposite directions. The high cup and helical twist angles at the central base-pair of T2A2 decreases the base stacking interactions compared to A2T2. Tilt angles within the tetranucleotide segments TTAA and AATT have opposite signs. In spite of the local differences caused by the sequence inversion (TTAA----AATT), the two dodecamers exhibit similar overall bending. The top third is more bent than the bottom third relative to the central segment. This asymmetric bending in the two dodecamers is mainly due to crystal packing interactions. 相似文献
19.
20.
Conformation of d(GGGATCCC)2 in crystals and in solution studied by X-ray diffraction, Raman spectroscopy and molecular modelling. 总被引:2,自引:0,他引:2 下载免费PDF全文
In the crystal, d(GGGATCCC)2 forms an A-DNA double helix as known from a single crystal X-ray diffraction study. Accordingly, in the Raman spectra of crystals the A-family marker bands at 664, 705, 807 and 1101 cm-1 and the spectral characteristics in the region 1200 to 1500 cm-1 clearly demonstrate the A-form as the dominant conformation. Bands at 691, 850, and 1080 cm-1, however, indicate that a minor fraction of the octamer molecules in the crystal is in an unusual, still not unequivocally identified conformation possibly belonging to the B-family. In solution, the octamer is in B-like conformation as shown by the presence of B-DNA Raman marker bands at 685, 837, 1094 and 1421 cm-1. Molecular modelling techniques lead to three structures with slightly different B-form geometries as the lowest energies models when a sigmoidal dielectric function with the bulk dielectric constant epsilon = 78 and the value q = -0.5e for the effective phosphate charges was used in the calculations. An A-form structure bearing a strong resemblance to the experimentally determined crystal structure becomes the lowest energy model structure when the electrostatic parameters are changed to epsilon = 30 and q = -0.25e, respectively. 相似文献