首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microfluidic lab-on-a-chip for microbial identification on a DNA microarray   总被引:1,自引:0,他引:1  
A lab-on-a-chip for the rapid identification of microbial species has been developed for a water monitoring system. We employed highly parallel DNA microarrays for the direct profiling of microbial populations in a sample. For the integration and minimization of the DNA microarray protocols for bacterial identification, rRNA was selected as a target nucleotide for probe:target hybridization. In order to hybridize target rRNA onto the probe oligonucleotide, intact rRNA extracted fromE. coli rRNA was fragmented via chemical techniques in the lab-on-a-chip platform. The size of fragmented rRNA was less than 400 base pairs, which was confirmed by polyacrylamide gel electrophoresis. The fragmented rRNA was also labeled using fluorescent chemicals. The lab-on-a-chip for fragmentation and labeling includes a PDMS chaotic mixer for efficient mixing, operated by flow pressure. In addition, the fragmented rRNA was hybridized successfully on a DNA microarray with sample recirculation on a microfluidic platform. Our fragmentation and labeling technique will have far-reaching applications, which require rapid but complicated chemical genetic material processing on a lab-on-a-chip platform.  相似文献   

2.
3.
Micro-fluidics is one of the major technologies used in developing micro-total analytical systems (μ-TAS), also known as “lab-on-a-chip”. With this technology, the analytical capabilities of room-size laboratories can be put on one small chip. In this paper, we will briefly introduce materials that can be used in micro-fluidic systems and a few modules (mixer, chamber, and sample prep. modules) for lab-on-a-chip to analyze biological samples. This is because a variety of fields have to be combined with micro-fluidic technologies in order to realize lab-on-a-chip.  相似文献   

4.
5.
In this paper, we described an integrated modularized microfluidic system that contained two distinct functional modules, one for nucleic acids (NA) extraction and the other for digital PCR (dPCR), allowing for detecting the bovine DNA in ovine tissue.  相似文献   

6.
C Liu  MG Mauk  R Hart  M Bonizzoni  G Yan  HH Bau 《PloS one》2012,7(8):e42222

Background

Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30–40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission.

Methodology/Principal Findings

An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark.

Conclusions/Significance

The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.  相似文献   

7.
The use of cell-based biosensors is usually limited by agonist-induced desensitization of cell-surface receptors. In this work, a microfluidic cell-based biosensor (μCBB) was developed for the detection of ATP in liquid environments. It consists of a millisecond chemical pulse generator for sample introduction in a pulsatile manner and a single NIH-3T3 cell expressing endogenous P2Y receptors as the sensing element. ATP solutions were used to simulate input signals for investigating the μCBB. By controlling negative pressures on two outlets of a cross-shaped microfluidic chip, pulses of ATP solutions were generated based on hydrodynamic gated injection. With ATP pulses of 100 ms every 50s, the amplitude of the resulting calcium spikes maintained at a similar level, suggesting that the receptor desensitization was minimized. Consequently, the developed μCBB could be used for detecting pulsatile samples with extended use times. The sensitivity of the μCBB for detecting ATP was further determined and the cellular responses to millisecond ATP pulses were investigated in comparison to long-term stimulations.  相似文献   

8.
In recent years, the use of acetylcholinesterases (AChEs) in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AChE as a biological recognition element is based on the inhibition of the enzyme's natural catalytic activity by the agent that is to be detected. The advanced understanding of the structure-function-relationship of AChEs serves as the basis for developing enzyme variants, which, compared to the wild type, show an increased inhibition efficiency at low insecticide concentrations and thus a higher sensitivity. This review describes different expression systems that have been used for the production of recombinant AChE. In addition, approaches to purify recombinant AChEs to a degree that is suitable for analytical applications will be elucidated as well as the various attempts that have been undertaken to increase the sensitivity of AChE to specified organophosphates and carbamates using side-directed mutagenesis and employing the enzyme in different assay formats.  相似文献   

9.
Functional metagenomics is an attractive culture-independent approach for functional screening of diverse microbiomes to identify known and novel genes. Since functional screening can involve sifting through tens of thousands of metagenomic library clones, an easy high-throughput screening approach is desirable. Here, we demonstrate a proof-of-concept application of a low-cost, high-throughput droplet based microfluidic assay to the selection of antibiotic resistance genes from a soil metagenomic library. Metagenomic library members encapsulated in nanoliter volume water-in-oil droplets were printed on glass slides robotically, and cell growth in individual drops in the presence of ampicillin was imaged and quantified to identify ampicillin-resistant clones. From the hits, true positives were confirmed by sequencing and functional validation. The ease of liquid handling, ease of set-up, low cost, and robust workflow makes the droplet-based nano-culture platform a promising candidate for screening and selection assays for functional metagenomic libraries.  相似文献   

10.
We report the development of a versatile system based on the oscillating-flow methodology in a thermal gradient system for nucleic acid analysis. Analysis of DNA and RNA samples were performed in the device, without additional temperature control and complexity. The technique reported in this study eliminates the need for predetermined fluidic channels for thermocycles, and complexity involved with additional incubation steps required for RNA amplification. A microfluidic device was fabricated using rapid prototyping by simply sandwiching dual side adhesive Kapton tape and a polydimethylsiloxane spacer between glass microscope slides. Amplification of the 181-bp segment of a viral phage DNA (ΦX174) and B2M gene in human RNA samples was demonstrated using the system. The developed system enables simultaneous acquisition of amplification and melt curves, eliminating the need for postprocessing. A direct comparison between the oscillating-flow system and a commercial real-time polymerase chain reaction (PCR) instrument showed complete agreement in PCR data and improved sample-to-result time by eliminating an additional 30 min melt curve step required in commercial PCR systems.  相似文献   

11.
Basal Stem Rot and Upper Stem Rot diseases caused by pathogenic fungus Ganoderma boninense continue to be a major plight in the palm oil industry. Despite continuous research in combating the problem, resolution remains stagnant. Here, developed an automated, high-throughput DNA extraction protocol on microfluidics device for a quick, disposable, label-free detection, within 2 h of assessment. Microfluidics was designed using AutoCAD software, fabricated on microscopic glass substrate using negative photoresist (SU-8 2015) and molded with a biopolymer silicone, Polydimethylsiloxane. G. boninense and unknown pathogenic fungus isolated from rotten mushroom were grown and fractions of extracted DNA were pooled and analyzed for comparison along with synthetic ssDNA of G. boninense. Results from LPM and HPM show successful fabrication with ≤0.1 mm variance between the dimensions in the design before and after lithography process. The PDMS microfluidics show no leakage when run with DNA samples. Analyses from I-V measurement, UV–vis, FTIR, and PCR show comparable results between extracted and synthetic ssDNA of G. boninense and a contrast with the unknown pathogenic fungus, indicating a successful DNA extraction protocol via microfluidics for label-free identification of G. boninense. Optimization of DNA extraction can be further devised for applicability on lab-on-a-chip devices.  相似文献   

12.
Microbial fuel cells for biosensor applications   总被引:1,自引:0,他引:1  
  相似文献   

13.
An electrochemical microfluidic biosensor with an integrated minipotentiostat for the quantification of RNA was developed based on nucleic acid hybridization and liposome signal amplification. Specificity of the biosensor was ensured by short DNA probes that hybridize with the target RNA or DNA sequence. The reporter probe was coupled to liposomes entrapping the electrochemically active redox couple potassium ferri/ferrohexacyanide. The capture probes were coupled to superparamagnetic beads that were isolated on a magnet in the biosensor. Upon capture, the liposomes were lysed to release the electrochemical markers that were detected on an interdigitated ultramicroelectrode array in the biosensor just downstream of the magnet. The current was measured, stored and displayed by miniaturized instrumentation (miniEC). The accuracy of the miniEC was evaluated by comparing its performance to a standard bench-top electrochemical workstation in static and dynamic DC amperometric experiments. In both sets of experiments, the inexpensive miniEC performance was comparable in signal strength to that of the electrochemical workstation. In fact, the miniEC achieved a detection limit of 0.01 μM combined ferri/ferrohexacyanide concentration which was 10× lower than that of the standard lab-bench system. The response time of the miniEC system was the same for low concentrations taking about 10 s to steady state. It was, however, slower at higher concentrations, taking 5 s versus only 1 s for the bench-top system. Finally, the functionality of the miniEC was successfully demonstrated with the detection of Dengue virus RNA.  相似文献   

14.
Ko JM  Ju J  Lee S  Cha HC 《Protoplasma》2006,227(2-4):237-240
Summary. Several advances have been made in the use of microfluidic devices for insect and mammalian cell cultures, but no reports of their use for plant cell cultures have been published. We, therefore, conducted a plant cell culture in a microfluidic device using polydimethylsiloxane. Nicotiana tabacum protoplasts were cultured in a variously shaped polydimethylsiloxane channel containing Nitsch medium supplemented with 0.5 g of NLN-13 vitamin mixture, 2.0 mg of α-naphthaleneacetic acid, and 0.5 mg of 6-benzyladenine per liter and 9% mannitol. Protoplasts in the polydimethylsiloxane channel showed cell division and microcolony formation within 4 weeks. The use of a microfluidic channel is a novel technique in the field of plant cell culture. The results of this study will encourage the utilization of polydimethylsiloxane-based microfluidic devices in plant cell engineering and cell analysis. Correspondence and reprints: Department of Biology, Dankook University, 29 San Anseo-dong, Cheonan 300-714, South Korea.  相似文献   

15.
We report a microfluidic sensing platform for the detection of thyroglobulin (Tg) using competitive protein adsorption. Serum Tg is a highly specific biomarker for residual thyroid tissue, recurrence and metastases after treatment for differentiated thyroid cancer (DTC). Conventional Tg detection techniques require complicated immobilization of antibodies and need to form a sandwich assay using additional secondary antibodies to enhance the sensitivity. We present a fundamentally different sensing technique without using antibody immobilization on a microfluidic platform. We engineer two surfaces covered by two known proteins, immunoglobulin G (IgG) and fibrinogen, with different affinities onto the surfaces. The microfluidic device offers a selective protein sensing by being displaced by a target protein, Tg, on only one of the surfaces. By utilizing the competitive protein adsorption, Tg displaces a weakly bound protein, IgG; however, a strongly bound protein, fibrinogen, is not displaced by Tg. The surface plasmon resonance (SPR) sensorgrams show that five human serum proteins, albumin, haptoglobin, IgG, fibrinogen and Tg, have different adsorption strengths to the surface and the competitive adsorption of individuals controls the exchange sequence. The adsorption and exchange are evaluated by fluorescent labeling of these proteins. Tg in a protein mixture of albumin, haptoglobin, and Tg is selectively detected based on the exchange reaction. By using the technique, we obviate the need to rely on antibodies as a capture probe and their attachment to transducers.  相似文献   

16.
A lab-on-a-chip system for rapid nucleic acid-based analysis was developed that can be applied for diagnosis of selected Phytophthora species as a first example for use in plant pathology. All necessary polymerase chain reaction process (PCR) and hybridization steps can be performed consecutively within a single chip consisting of two components, an inflexible and a flexible one, with integrated microchannels and microchambers. Data from the microarray is collected from a simple electrical measurement that is based on elementary silver deposition by enzymatical catalyzation. Temperatures in the PCR and in the hybridization zone are managed by two independent Peltier elements. The chip will be integrated in a compact portable system with a pump and power supply for use on site. The specificity of the lab-on-a-chip system could be demonstrated for the tested five Phytophthora species. The two Pythium species gave signals below the threshold. The results of the electrical detection of the microarray correspond to the values obtained with the control method (optical grey scale analysis).  相似文献   

17.
Measuring synchronization in neuronal networks for biosensor applications   总被引:2,自引:0,他引:2  
Cultures of neurons can be grown on microelectrode arrays (MEAs), so that their spike and burst activity can be monitored. These activity patterns are quite sensitive to changes in the environment, such as chemical exposure, and hence the cultures can be used as biosensors. One key issue in analyzing the data from neuronal networks is how to quantify the level of synchronization among different units, which represent different neurons in the network. In this paper, we propose a synchronization metric, based on the statistical distribution of unit-to-unit correlation coefficients. We show that this synchronization metric changes significantly when the networks are exposed to bicuculline, strychnine, or 2,3-dioxo-6-nitro-l,2,3,4-tetrahydrobenzoquinoxaline-7-sulphonamide (NBQX). For that reason, this metric can be used to characterize pharmacologically induced changes in a network, either for research or for biosensor applications.  相似文献   

18.
Conventional immunoassays are labor intensive, expensive and time consuming and require large pieces of equipment for detection. Therefore, we have developed and characterized a novel immunoassay methodology comprised of microbeads and microbiochips. In this method, microbeads are used to filter and immobilize antibodies and an immuno-gold silver staining (IGSS) method is then used to amplify electrical signals that correspond to the bound antibodies. The chip used for this system is composed of an inexpensive and biocompatible polydimethylsiloxane (PDMS) layer over a Pyrex glass substrate that contains a platinum (Pt) microelectrode, which is used to detect the electrical signal in this system, the microelectrode is fabricated on the substrate and a microchannel and pillar-type microfilter is formed in the PDMS layer. A sandwich immunoassay approach was applied to detect alpha-fetoprotein (AFP), a cancer biomarker, using this system. The results of this study showed that the time required for a complete assay was reduced by 1h and a detection limit as low as 1 ng/mL was attained when this system used, which indicates that similar bead-based electrical detection systems could be used for the diagnosis of many forms of cancer.  相似文献   

19.
The ability to create biocompatible well-controlled membranes has been an area of great interest over the last few years, particularly for biosensor applications. The present study describes the fabrication and characterization of novel nanoporous micromachined membranes that exhibit selective permeability and low biofouling. Results indicate that such membranes can be fabricated with uniform pore sizes capable of the simultaneous exclusion of albumin and diffusion of glucose. Compared to polymeric membranes of similar pore size, micromachined silicon membranes allowed more than twice the amount of glucose diffusion after 240 min and complete albumin exclusion. Moreover, membranes exhibit no morphological change or degradability in the presence of biological proteins and fluids at 37 degrees C. The results point to the potential of using such membranes for implantable biosensor applications. With monodisperse pores sizes as small as 10 nm, these membranes offer advantages in their reproducibility, stability, and ability to be integrated in silicon-based biosensing technology.  相似文献   

20.
In this study we present the results obtained from efforts to stabilize the inherently unstable m-AChE in nanoporous materials, for the development of biosensors with increased operational stability. Based on existing theoretical models, the entrapment of proteins into relatively small rigid cages drastically increases the stability of these proteins, as this is manifested by their decreased tendency to unfold. The use of two different meso/nanomaterials for the immobilization of the m-AChE shows that there is both a decrease in the leaching of the protein from the biosensor membrane to the test solution, as well as a drastic increase in the operational stability of the resulting biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号