首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (B(A)), bacteriopheopytin (H(A)), the primary quinone (Q(A)) to the secondary quinone (Q(B)). Although the non-heme iron complex (Fe complex) is located between Q(A) and Q(B), it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of Q(A) and Q(B) in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of Q(A/B) (E(m)(Q(A/B))) and the Fe complex (E(m)(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. E(m)(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic E(m)(Fe) downshift by 230 mV upon formation of Q(A)(-) (but not Q(B)(-)) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

2.
Hiroshi Ishikita 《BBA》2007,1767(11):1300-1309
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (BA), bacteriopheopytin (HA), the primary quinone (QA) to the secondary quinone (QB). Although the non-heme iron complex (Fe complex) is located between QA and QB, it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of QA/B (Em(QA/B)) and the Fe complex (Em(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. Em(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic Em(Fe) downshift by 230 mV upon formation of QA (but not QB) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

3.
Chen IP  Mathis P  Koepke J  Michel H 《Biochemistry》2000,39(13):3592-3602
The cytochrome (cyt) subunit of the photosynthetic reaction center from Rhodopseudomonas viridis contains four heme groups in a linear arrangement in the spatial order heme1, heme2, heme4, and heme3. Heme3 is the direct electron donor to the photooxidized primary electron donor (special pair, P(+)). This heme has the highest redox potential (E(m)) among the hemes in the cyt subunit. The E(m) of heme3 has been specifically lowered by site-directed mutagenesis in which the Arg residue at the position of 264 of the cyt was replaced by Lys. The mutation decreases the E(m) of heme3 from +380 to +270 mV, i.e., below that of heme2 (+320 mV). In addition, a blue shift of the alpha-band was found to accompany the mutation. The assignment of the lowered E(m) and the shifted alpha-band to heme3 was confirmed by spectroscopic measurements on RC crystals. The structure of the mutant RC has been determined by X-ray crystallography. No remarkable differences were found in the structure apart from the mutated residue itself. The velocity of the electron transfer (ET) from the tetraheme cyt to P(+) was measured under several redox conditions by following the rereduction of P(+) at 1283 nm after a laser flash. Heme3 donates an electron to P(+) with t(1/2) = 105 ns, i.e., faster than in the wild-type reaction center (t(1/2) = 190 ns), as expected from the larger driving force. The main feature is that a phase with t(1/2) approximately 2 micros dominates when heme3 is oxidized but heme2 is reduced. We conclude that the ET from heme2 to heme3 has a t(1/2) of approximately 2 micros, i.e., the same as in the WT, despite the fact that the reaction is endergonic by 50 meV instead of exergonic by 60 meV. We propose that the reaction kinetics is limited by the very uphill ET from heme2 to heme4, the DeltaG degrees of which is about the same (+230 meV) in both cases. The interpretation is further supported by measurements of the activation energy (216 meV in the wild-type, 236 meV in the mutant) and by approximate calculations of ET rates. Altogether these results demonstrate that the ET from heme2 to heme3 is stepwise, starting with a first very endergonic step from heme2 to heme4.  相似文献   

4.
The ureas and phenolics are two major classes of herbicides that act on Photosystem II (PSII) and are normally inactive in the photosynthetic reaction centers of purple bacteria. However, the triazine-resistant mutant T4 from Rhodopseudomonas (Rps.) viridis, which has the tyrosine residue at position 222 on the L subunit substituted for phenylalanine (TyrL222Phe), is sensitive to both ureas and phenolics. Since for the first time structural data on urea binding are available, T4 is a particularly interesting model for the herbicide-binding site of PSII.  相似文献   

5.
Site-specific mutations in the quinone binding sites of the photosynthetic reaction center (RC) protein complexes of Rhodobacter (R.) capsulatus caused pronounced effects on sequential electron transfer. Conserved residues that break the twofold symmetry in this region of the RC – M246Ala and M247Ala in the QA binding pocket, and L212Glu and L213Asp in the QB binding pocket – were targeted. We constructed a QB-site mutant, L212Glu-L213Asp Ala-Ala, and a QA-site mutant, M246Ala–M247Ala Glu-Asp, to partially balance the differences in charge distribution normally found between the two quinone binding sites. In addition, two photocompetent revertants were isolated from the photosynthetically-incompetent M246Glu-M247Asp mutant: M246Ala–M247Asp and M246Gly–M247Asp. Sequential electron transfer was investigated by continuous light excitation and time-resolved electron paramagnetic resonance (EPR), and time-resolved optical techniques. Several lines of EPR evidence suggested that the forward electron transfer rate to QA, kQ, was slowed in those strains containing altered QA sites. The slower rates of secondary electron transfer were confirmed by time-resolved optical results with the M246Glu-M247Asp mutations in the QA site resulting in a dramatically lowered secondary electron transfer efficiency [kQ < (2 ns)-1] in comparison with either the native R. capsulatus RC or the QB site mutant [kQ (200 ps)-1]. Secondary electron transfer in the two revertants was intermediate between that of the native RC and the QA mutant. The P+ QA- PQA charge recombination rates were also changed in the strains that carried altered QA sites. We show that local mutations in the QA site, presumably through local electrostatic changes, significantly alter binding and electron transfer properties of QA.  相似文献   

6.
7.
Ishikita H  Knapp EW 《FEBS letters》2006,580(18):4567-4570
To elucidate the role of the non-heme iron complex (Fe-complex) in the electron transfer (ET) events of bacterial photosynthetic reaction centers (bRC), we calculated redox potentials of primary/secondary quinones Q(A/B) (E(m)(Q(A/B))) in the Fe-depleted bRC. Removing the Fe-complex, the calculated E(m)(Q(A/B)) are downshifted by approximately 220 mV/ approximately 80 mV explaining both the 15-fold decrease in ET rate from bacteriopheophytin (H(A)(-)) to Q(A) and triplet state occurrence in Fe-depleted bRC. The larger downshift in E(m)(Q(A)) relative to E(m)(Q(B)) increases the driving-energy for ET from Q(A) to Q(B) by 140 meV, in agreement with approximately 100 meV increase derived from kinetic studies.  相似文献   

8.
The purple non-sulfur bacterium Rhodopseudomonas viridis contains a photosynthetic reaction center which has been structurally resolved to 2.3 A providing a unique basis for the study of biological electron transfer processes by the method of site-specific mutagenesis. Here we report the construction of a puf operon deleted mutant strain incapable of photosynthetic growth. The deletion was introduced with the help of a newly constructed suicide vector by electroporation which is with conjugation another gene transfer system for R. viridis. The deletion strain was complemented by conjugational gene transfer with wild-type (WT) and mutated LM genes of the puf operon. The complemented WT and mutations YL162F and HL153F grew photosynthetically, expressed and assembled the four subunits L, M, H and Cyt c of the reaction center correctly. These first mutations already demonstrate the value of the R. viridis system for a detailed structure-function analysis of photosynthetic electron transfer.  相似文献   

9.
10.
The spectra of the special-pair cation radicals P+ produced after photoexcitation of photosynthetic reaction centres and initial electron transfer can, in principle, provide important information concerning the function of the reaction centres. Extraction of this information requires detailed knowledge of the spectroscopy of the cations, however. We review our contributions to this field concerning the bands observed at near 2500 cm–1 and 8000 cm–1, and review results obtained from the study of porphyrin reaction-centre model complexes. We also consider the impact of recent experimental developments in these fields. However, our primary focus is to raise the possibility that the observed band at 2500 cm–1 is either a composite of two independent electronic transitions or has both an allowed component and a forbidden component arising from vibronic coupling to intense high-energy transitions. The resolution of this dichotomy will have profound consequences for interpretation of the function of photosynthetic reaction centres.  相似文献   

11.
In bright light the photosynthetic reaction center (RC) of Rhodobacter sphaeroides stabilizes the P(+)(870).Q(-)(A) charge-separated state and thereby minimizes the potentially harmful effects of light saturation. Using X-ray diffraction we report a conformational change that occurs within the cytoplasmic domain of this RC in response to prolonged illumination with bright light. Our observations suggest a novel structural mechanism for the regulation of electron transfer reactions in photosynthesis.  相似文献   

12.
Accessory chlorophylls (B(A/B)) in bacterial photosynthetic reaction center play a key role in charge-separation. Although light-exposed and dark-adapted bRC crystal structures are virtually identical, the calculated B(A) redox potentials for one-electron reduction differ. This can be traced back to different orientations of the B(A) ester-group. This tuning ability of chlorophyll redox potentials modulates the electron transfer from SP* to B(A).  相似文献   

13.
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.  相似文献   

14.
The active site sequence of T4 thioredoxin, Cys-Val-Tyr-Cys, has been modified in two positions to Cys-Gly-Pro-Cys to mimic that of Escherichia coli thioredoxin. The two point mutants Cys-Gly-Tyr-Cys and Cys-Val-Pro-Cys have also been constructed. The mutant proteins have similar reaction rates with T4 ribonucleotide reductase as has the wild-type T4 thioredoxin. Mutant T4 thioredoxins with Pro instead of Tyr at position 16 in the active site sequence have three to four times lower apparent KM with E. coli ribonucleotide reductase than wild-type T4 thioredoxin. The KM values for these mutant proteins which do not have Tyr in position 16 are thus closer to E. coli thioredoxin than to the wild-type T4 thioredoxin. The bulky tyrosine side chain probably prevents proper interactions to E. coli ribonucleotide reductase. Also the redox potentials of these two mutant thioredoxins are lower than that of the wild-type T4 thioredoxin and are thereby more similar to the redox potential of E. coli thioredoxin. Mutations in position 15 behave more or less like the wild-type protein. The kinetic parameters with E. coli thioredoxin reductase are similar for wild-type and mutant T4 thioredoxins except that the apparent kcat is lower for the mutant protein with Pro instead of Tyr in position 16. The active site sequence of T4 thioredoxin has also been changed to Cys-Pro-Tyr-Cys to mimic that of glutaredoxins. This change does not markedly alter the reaction rate of the mutant protein with T4 ribonucleotide reductase or E. coli thioredoxin reductase, but the redox potential is lower for this mutant protein than for wild-type T4 thioredoxin.  相似文献   

15.
《BBA》2020,1861(8):148204
Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow.  相似文献   

16.
Site-directed mutagenesis of the photosynthetic apparatus (PSA) genes in Rhodopseudomonas capsulata is presented utilizing a transposon Tn7 mutagenized R-prime. The R-prime, pRPS404, bears most of the genes necessary for the differentiation of the photosynthetic apparatus. Mutagenesis of the R-prime with Tn7 in Escherichia coli, conjugation into R. capsulata, and homologous recombination with the wild-type alleles efficiently generates photosynthetic apparatus lesions. Wild-type alleles are lost spontaneously and the Tn7-induced lesions are revealed by subsequent intramolecular recombination between IS21 insertion elements that bracket the prime sequences in direct repeat. The molecular nature of the intermediates involved in the transposition, recombination and deletion have been investigated by Southern hybridization analysis. The spontaneous loss of wild-type alleles after homologous recombination with the chromosome may be of general use to other prokaryotic site-directed transposon mutagenesis schemes. The IS21-mediated deletion of the prime DNA is dependent on the RecA protein in E. coli, generating the parental R-factor bearing one IS21 element.A genetic-physical map exists for a portion of the prime photosynthetic apparatus DNA. When Tn7 is inserted into a bacteriochlorophyll gene in the Rprime and then crossed into R. capsulata, mutants are produced that accumulate a bacteriochlorophyll precursor, which is in excellent agreement with the existing genetic-physical map. This corroborates our mutagenesis scheme. Mutants arising from Tn7 insertions outside of the genetic map have been isolated. Light harvesting II mutations have been isolated; one mutant lacks only the 14,000 Mr, polypeptide.  相似文献   

17.
Fersht and co-workers have applied a linear free energy relation (Br?nsted equation) to analyze site-directed mutagenesis experiments involving the enzyme tyrosyl-tRNA synthetase and have suggested that the Br?nsted exponent is linearly correlated with the value of the reaction coordinate at the transition state. We point out that when the mutants differ solely through the formation or deletion of a hydrogen bond away from the reaction center, a linear free energy relation is expected only in limiting cases for which the Br?nsted relation exponent is 0, 1 or infinity. The results may be correlated with a conformational coordinate but not with the development of the reaction coordinate per se.  相似文献   

18.
Larson JW  Wraight CA 《Biochemistry》2000,39(48):14822-14830
Redox titration of horse heart cytochrome c (cyt c), in the presence of varying concentrations of detergent-solubilized photosynthetic reaction center (RC) from Rhodobacter sphaeroides, revealed an RC concentration-dependent decrease in the measured cyt c midpoint potential that is indicative of a 3.6 +/- 0.2-fold stronger binding affinity of oxidized cytochrome to a single binding site. This effect was correlated with preferential binding in the functional complex by redox titration of the fraction of RCs exhibiting microsecond, first-order, special pair reduction by cytochrome. A binding affinity ratio of 3.1 +/- 0.4 was determined by this second technique, confirming the result. Redox titration of flash-induced intracomplex electron transfer also showed the association in the electron transfer-active complex to be strong, with a dissociation constant of 0.17 +/- 0.03 microM. The tight binding is associated with a slow off-rate which, in the case of the oxidized form, can influence the kinetics of P(+) reduction. The pitfalls of the common use of xenon flashlamps to photoexcite fast electron-transfer reactions are discussed with relation to the first electron transfer from primary to secondary RC quinone acceptors. The results shed some light on the diversity of kinetic behavior reported for the cytochrome to RC electron-transfer reaction.  相似文献   

19.
L H Chen  T O Baldwin 《Biochemistry》1989,28(6):2684-2689
Numerous luciferase structural gene mutants of Vibrio harveyi have been generated by random mutagenesis and phenotypically characterized [Cline, T.W., & Hastings, J.W. (1972) Biochemistry 11, 3359-3370]. All mutants selected by Cline and Hastings for altered kinetics in the bioluminescence reaction had lesions in the alpha subunit. One of these mutants, AK-20, has normal or slightly enhanced thermal stability and enhanced FMNH2 binding affinity but a much-reduced quantum yield of bioluminescence and dramatically altered stability of the aldehyde-C4a-peroxydihydroflavin-luciferase intermediate (IIA), with a different aldehyde chain length dependence from that of the wild-type luciferase. To better understand the structural aspects of the aldehyde binding site in bacterial luciferase, we have cloned the luxAB genes from the V. harveyi mutant AK-20, determined the nucleotide sequence of the entire luxA gene, and determined the mutation to be TCT----TTT, resulting in a change of serine----phenylalanine at position 227 of the alpha subunit. To confirm that this alteration caused the altered kinetic properties of AK-20, we reverted the AK-20 luxA gene by oligonucleotide-directed site-specific mutagenesis to the wild-type sequence and found that the resulting enzyme is indistinguishable from the wild-type luciferase with respect to quantum yield, FMNH2 binding affinity, and intermediate IIA decay rates with 1-octanal, 1-decanal, and 1-dodecanal. To investigate the cause of the AK-20 phenotype, i.e., whether the phenotype is due to loss of the seryl residue or to the properties of the phenylalanyl residue, we have constructed mutants with alanine, tyrosine, and tryptophan at alpha 227.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Tehrani A  Prince RC  Beatty JT 《Biochemistry》2003,42(30):8919-8928
Purple bacterial photosynthetic reaction center (RC) H proteins comprise three cellular domains: an 11 amino acid N-terminal sequence on the periplasmic side of the inner membrane; a single transmembrane alpha-helix; and a large C-terminal, globular cytoplasmic domain. We studied the roles of these domains in Rhodobacter sphaeroides RC function and assembly, using a mutagenesis approach that included domain swapping with Blastochloris viridis RC H segments and a periplasmic domain deletion. All mutations that affected photosynthesis reduced the amount of the RC complex. The RC H periplasmic domain is shown to be involved in the accumulation of the RC H protein in the cell membrane, while the transmembrane domain has an additional role in RC complex assembly, perhaps through interactions with RC M. The RC H cytoplasmic domain also functions in RC complex assembly. There is a correlation between the amounts of membrane-associated RC H and RC L, whereas RC M is found in the cell membrane independently of RC H and RC L. Furthermore, substantial amounts of RC M and RC L are found in the soluble fraction of cells only when RC H is present in the membrane. We suggest that RC M provides a nucleus for RC complex assembly, and that a RC H/M/L assemblage results in a cytoplasmic pool of soluble RC M and RC L proteins to provide precursors for maximal production of the RC complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号