首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenium deficiency impairs thyroid hormone metabolism by inhibiting the synthesis and activity of the iodothyronine deiodinases, which convert thyroxine (T4) to the more metabolically active 3,3′-5 triiodothyronine (T3). Hepatic type I iodothyronine deiodinase, identified in partially purified cell fractions using affinity labeling with [125I]N-bromoacetyl reverse triiodothyronine, is also labeled with75Se by in vivo treatment of rats with75Se-Na2SeO3. Thus, the type I iodothyronine 5′-deiodinase is a selenoenzyme. In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone. These results indicate that a concurrent selenium deficiency could be a major determinant of the severity of iodine deficiency.  相似文献   

2.
Selenium deficiency impairs thyroid hormone metabolism by inhibiting the synthesis and activity of the iodothyronine deiodinases, which convert thyroxine (T4) to the more metabolically active 3,3′–5 triiodothyronine (T3). Hepatic type I iodothyronine deiodinase, identified in partially purified cell fractions using affinity labeling with [125I]N-bromoacetyl reverse triiodothyronine, is also labeled with75Se by in vivo treatment of rats with75Se−Na2SeO3. Thus, the type I iodothyronine 5′-deiodinase is a selenoenzyme. In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone. These results indicate that a concurrent selenium deficiency could be a major determinant of the severity of iodine deficiency.  相似文献   

3.
PCB153, one of the 3 dominant congeners in the food chain, causes the disruption of the endocrine system in humans and animals. In order to elucidate the effects of PCB153 on the biosynthesis, biotransformation, regulation, metabolism, and transport of thyroid hormones (THs), Sprague-Dawley (SD) rats were dosed with PCB153 intraperitoneally (i.p.) at 0, 4, 16 and 32 mg/kg/day for 5 consecutive days and sacrificed 24 h after the last dose. Results showed that after treatment with PCB153, serum total thyroxine (TT4), total triiodothyronine (TT3), and thyrotropin releasing hormone (TRH) decreased, whereas serum thyroid stimulating hormone (TSH) concentration did not alter. The serum sodium iodide symporter (NIS), thyroid peroxidase (TPO), and thyroglobulin (Tg) levels decreased. The mRNA expressions of type 2 and 3 deiodinases (D2 and D3) reduced, but the type 1 deiodinase (D1) showed no significant change. The TSH receptor (TSHr) and TRH receptor (TRHr) levels declined. PCB153 induced hepatic enzymes, and the UDPGTs, CYP2B1, and CYP3A1 mRNA levels were significantly elevated. Taken together, the observed results from the present study indicated that PCB153 disrupted thyroid hormone homeostasis through influencing synthesis-associated proteins (NIS, TPO and Tg), deiodinases, receptors (TSHr and TRHr), and hepatic enzymes, and the decrease of D3 expression might be the compensatory response of body.  相似文献   

4.
The regulation of energy homeostasis by thyroid hormones is unquestionable, and iodothyronine deiodinases are enzymes involved in the metabolic activation or inactivation of these hormones at the cellular level. T3 is produced through the outer ring deiodination of the prohormone T4, which is catalyzed by types 1 and 2 iodothyronine deiodinases, D1 and D2. Conversely, type 3 iodothyronine deiodinase (D3) catalyzes the inner ring deiodination, leading to the inactivation of T4 into reverse triiodothyronine (rT3). Leptin acts as an important modulator of central and peripheral iodothyronine deiodinases, thus regulating cellular availability of T3. Decreased serum leptin during negative energy balance is involved in the down regulation of liver and kidney D1 and BAT D2 activities. Moreover, in high fat diet induced obesity, instead of increased serum T3 and T4 secondary to higher circulating leptin and thyrotropin levels, elevated serum rT3 is found, a mechanism that might impair the further increase in oxygen consumption.  相似文献   

5.
Selenium is an integral component of the enzymes glutathione peroxidase (GPx) and iodothyronine deiodinases. Although selenium nutrition could conceivably affect thyroid function in infants, children and adolescents, available data suggest that the effect of selenium deficiency on thyroid function is relatively modest. In patients with isolated selenium deficiency (such as patients with phenylketonuria receiving a low-protein diet), peripheral thyroid hormone metabolism is impaired but there are no changes in thyrotropin (TSH) or clinical signs of hypothyroidism, suggesting that these patients are euthyroid. Selenium supplementation may be advisable to optimize tissue GPx activity and prevent potential oxidative stress damage. In areas where combined selenium and iodine deficiencies are present (such as endemic goiter areas in Central Africa), selenium deficiency may be responsible for the destruction of the thyroid gland in myxoedematous cretins but may also play a protective role by mitigating fetal hypothyroidism. In these areas, selenium supplementation should only be advocated at the same time or after iodine supplementation. In patients with absent or decreased production of thyroid hormones and who rely solely on deiodination of exogenous L-thyroxine for generation of the active triiodothyronine (such as patients with congenital hypothyroidism), selenium supplementation may optimize thyroid hormone feedback at the pituitary level and decrease stimulation of the residual thyroid tissue.  相似文献   

6.
We investigated the effect of acute cold exposure, leptin, and the somatostatin analog octreotide (OCT) on thyroid type I (D1) and II (D2) deiodinase activities. Microsomal D1 and D2 activities were measured by the release of (125)I from (125)I-reverse triiodothyronine (rT(3)) under different assay conditions. Rats exposed to 4 degrees C (15, 30, 60, and 120 min) showed progressive reduction in thyroidal D1 and D2, reaching approximately 40% at 2 h (P < 0.05) despite increased circulating TSH (P < 0,05) associated with the higher thyroid D1 and D2 in hypothyroid rats. A single injection of leptin (8 microg/100 g body wt sc) induced increased thyroid and liver D1 (P < 0.05), but not thyroid D2, activities at 30 and 120 min, independently of the serum TSH rise shown only at 2 h. OCT (1 microg/kg body wt sc) increased D1 and D2 activity significantly 24 h after a single injection, with no changes in serum TSH. Therefore, leptin and somatostatin are potential physiological upregulators of thyroid deiodinases, and their low secretion during acute cold exposure may be a potential mechanism contributing to cold-induced reduction in thyroid deiodinase activity.  相似文献   

7.

Background

Thyroid hormone signaling is critical for development, growth and metabolic control in vertebrates. Although serum concentration of thyroid hormone is remarkable stable, deiodinases modulate thyroid hormone signaling on a time- and cell-specific fashion by controlling the activation and inactivation of thyroid hormone.

Scope of the review

This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold‐containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner.

Major conclusions

D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic- and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis.

General significance

Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

8.
Intranasal insulin (II) administration is widely used in the last years to treat Alzheimer’s disease and other cognitive disorders. Meanwhile, it is almost not used to treat type 2 diabetes mellitus (DM2), mainly due to insufficiently studied molecular mechanisms of its effect on the hormonal and metabolic status of the organism. The effect of II on activity of the hypothalamic signaling systems playing a key role in central regulation of energy metabolism is also poorly studied. The aim of this work was to study the effect of 5-week II treatment of male rats with the neonatal model of DM2 (0.48 ME/rat) both on the metabolic parameters and functional activity of the hypothalamic signaling systems. II treatment of diabetic rats (DI group) was shown to normalize the blood glucose level and restore glucose tolerance and utilization. In the hypothalamus of the DI group, the regulatory effects of agonists of the type 4 melanocortin receptor (MC4R), type 2 dopamine receptor (D2-DAR) and serotonin 1B receptor (S1BR) on adenylyl cyclase (AC) activity, reduced under DM2, were found to be restored; moreover, the inhibitory effect of S1BR agonists became even stronger as compared to control. In the DI group, the restoration of AC hormonal regulation was associated with a considerable increase in expression of the genes encoding S1BR and MC4R. Besides, the attenuation of the AC-stimulating effect of D2-DAR agonists against the background of decreasing expression of the Drd1 gene was found to promote the enhancement of the negative effect of dopamine on AC activity. II treatment did not have a considerable effect on expression of the genes encoding the insulin receptor and insulin receptor substrate-2, which was slightly reduced in the hypothalamus of diabetic rats. Thus, II treatment of rats with the neonatal model of DM2 partially restores the hypothalamic AC signaling pathways regulated by melanocortin, serotonin and dopamine, demonstrating thereby one of the mechanisms of the positive influence of II on energy metabolism and insulin sensitivity in peripheral tissues.  相似文献   

9.
Aging is associated with changes in thyroid gland physiology. Age-related changes in the contribution of peripheral tissues to thyroid hormone serum levels have yet to be systematically assessed. Here, we investigated age-related alterations in the contributions of the liver and kidney to thyroid hormone homeostasis using 6-, 12-, and 24-mo-old male Wistar rats. A significant and progressive decline in plasma thyroxine occurred with age, but triiodothyronine (T(3)) was decreased only at 24 mo. This was associated with an unchanged protein level of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the kidney and with a decreased MCT8 level in the liver at 24 mo. Hepatic type I deiodinase (D1) protein level and activity declined progressively with age. Renal D1 levels were decreased at both 12 and 24 mo but D1 activity was decreased only at 24 mo. In the liver, no changes occurred in thyroid hormone receptor (TR) TRalpha(1), whereas a progressive increase in TRbeta(1) occurred at both mRNA and total protein levels. In the kidney, both TRalpha(1) and TRbeta(1) mRNA and total protein levels were unchanged between 6 and 12 mo but increased at 24 mo. Interestingly, nuclear TRbeta1 levels were decreased in both liver and kidney at 12 and 24 mo, whereas nuclear TRalpha(1) levels were unchanged. Collectively, our data show differential age-related changes among hepatic and renal MCT8 and D1 and TR expressions, and they suggest that renal D1 activity is maintained with age to compensate for the decrease in hepatic T(3) production.  相似文献   

10.
Thyroid diseases are closely associated with the development of types 1 and 2 diabetes mellitus (DM), and the development of effective approaches for their treatment is one of the urgent problems of endocrinology. Traditionally, thyroid hormones (THs) are used to correct functions of the thyroid system. However, they are characterized by many side effects, including their negative effect on the cardiovascular system as well as the ability of TH to enhance insulin resistance and to impair insulin-producing function of the pancreas thus exacerbating diabetic pathology. In this context significant efforts have been made to develop TH analogues, selective for certain types of TH receptors that do not have these side effects. The peptide and lowmolecular weight regulators of thyroid-stimulating hormone receptor, which regulate the activity of the thyroid axis at the stage of TH synthesis and secretion in thyrocytes, are being created. Systemic and intranasal administration of insulin, as well as metformin therapy and administration of antioxidants are effective for the treatment of thyroid pathology in patients with types 1 and 2 DM. In the review, the literature data and the results of own studies on pharmacological approaches for the treatment and prevention of thyroid diseases in patients with types 1 and 2 DM have been summarized and analyzed.  相似文献   

11.

Background

Thyroid hormones regulate skeletal development, acquisition of peak bone mass and adult bone maintenance. Abnormal thyroid status during childhood disrupts bone maturation and linear growth, while in adulthood it results in altered bone remodeling and an increased risk of fracture

Scope of Review

This review considers the cellular effects and molecular mechanisms of thyroid hormone action in the skeleton. Human clinical and population data are discussed in relation to the skeletal phenotypes of a series of genetically modified mouse models of disrupted thyroid hormone signaling.

Major Conclusions

Euthyroid status is essential for normal bone development and maintenance. Major thyroid hormone actions in skeletal cells are mediated by thyroid hormone receptor α (TRα) and result in anabolic responses during growth and development but catabolic effects in adulthood. These homeostatic responses to thyroid hormone are locally regulated in individual skeletal cell types by the relative activities of the type 2 and 3 iodothyronine deiodinases, which control the supply of the active thyroid hormone 3,5,3’-L-triiodothyronine (T3) to its receptor.

General Significance

Population studies indicate that both thyroid hormone deficiency and excess are associated with an increased risk of fracture. Understanding the cellular and molecular basis of T3 action in skeletal cells will lead to the identification of new targets to regulate bone turnover and mineralization in the prevention and treatment of osteoporosis. This article is part of a Special Issue entitled Thyroid hormone signaling.  相似文献   

12.
13.
14.
Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of β-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications.  相似文献   

15.
《Endocrine practice》2014,20(6):589-596
ObjectiveVarious physiological changes occur in maternal thyroid economy during pregnancy. This review focuses on the events taking place during gestation that together strongly influence maternal thyroid function.MethodsScientific reports on maternal thyroid physiology in pregnancy.ResultsDuring the 1st trimester, human chorionic gonadotropin (hCG) induces a transient increase in free thyroxine (FT4) levels, which is mirrored by a lowering of thyroid-stimulating hormone (TSH) concentrations. Following this period, serum FT4 concentrations decrease of approximately 10 to 15%, and serum TSH values steadily return to normal. Also starting in early gestation, there is a marked increase in serum thyroxine-binding globulin (TBG) concentrations, which peak around midgestation and are maintained thereafter. This event, in turn, is responsible for a significant rise in total T4 and triiodothyronine (T3). Finally, significant modifications in the peripheral metabolism of maternal thyroid hormones occur, due to the expression and activity of placental types 2 and 3 iodothyronine deiodinases (D2 and D3, respectively).ConclusionIn line with these variations, both free thyroid hormone and TSH reference intervals change throughout pregnancy, and most scientific societies now recommend that method-and gestation-specific reference ranges be used for interpreting results in pregnancy.The maternal iodide pool reduces during pregnancy because of increased renal clearance of iodine and transfer of iodine to the feto-placental unit. This results in an additional requirement of iodine during pregnancy of ~ 100% as compared to nonpregnant adults. In accordance, the recommended iodine intake in pregnancy is 250 μg/day. A daily iodine intake below this threshold poses risks of various degrees of thyroid insufficiency for both the mother and the fetus. (Endocr Pract. 2014;20:589-596)  相似文献   

16.
New data concerning molecular structure, localization and functions of iodothyronine deiodinases in animal and human organisms are reviewed in the article. Mechanisms of 5- and 5'-deiodination of thyroid hormones by intracellular iodothyronine deiodinases are considered, the role of these enzymes in the processes of biologically active iodothyronine formation and thyroid hormone inactivation are shown. The data which suggest functioning iodothyronine-5'-deiodinases in the cells of haemopoietic and lymphopoietic systems, and connection between the rate of enzyme expression and cell differentiation level are adduced. Participation of thyroid hormones and other factors in the regulation of expression and functional activities of iodothyronine-5'-deiodinases in the cells is discussed. The important role of iodothyronine deiodinases in mechanisms of optimization of intracellular thyroid status in altered physiological state of organism, during ontogenesis and in pathological conditions is considered.  相似文献   

17.
Leptin has been shown to modulate deiodinase type 1 (D1) and type 2 (D2) enzymes responsible for thyroxine (T4) to triiodothyronine (T3) conversion. Previously, it was demonstrated that a single injection of leptin in euthyroid fed rats rapidly increased liver, pituitary, and thyroid D1 activity, and simultaneously decreased brown adipose tissue (BAT) and hypothalamic D2 activity. We have now examined D1 and D2 activities, two hours after a single subcutaneous injection of leptin (8 microg/100 g BW) into hypo- and hyperthyroid rats. In hypothyroid rats, leptin did not modify pituitary, liver and thyroid D1, and thyroid D2 activity, while pituitary D2 was decreased by 41% (p<0.05) and hypothalamic D2 showed a 1.5-fold increase. In hyperthyroid rats, thyroid and pituitary D1, and pituitary and hypothalamic D2 were not affected by leptin injection, while liver D1 showed a 42% decrease (p<0.05). BAT D2 was decreased by leptin injection both in hypo- and hyperthyroid states (42 and 48% reduction, p<0.001). Serum TH and TSH showed the expected variations of hypo- and hyperthyroid state, and leptin had no effect. Serum insulin was lower in hypothyroid than in hyperthyroid rats and remained unchanged after leptin. Therefore, acute effects of leptin on D1 and D2 activity, expect for BAT D2, were abolished or modified by altered thyroid state, in a tissue-specific manner, showing an IN VIVO interplay of thyroid hormones and leptin in deiodinase regulation.  相似文献   

18.
We evaluated the effects of two organochlorinated environmental contaminants, Endosulfan and Aroclor 1254 on peripheral thyroid hormone metabolism and thyroid hormone plasma levels in Nile tilapia (Oreochromis niloticus). Tilapia were exposed through diet to 0.1 and 0.5 microg g(-1) of Endosulfan and 0.5 microg g(-1) of Aroclor 1254 for 21 and 35 days. Decreased plasma T4 and rT3 levels were observed in tilapia exposed to the lower dose of Endosulfan, while treatment with a higher dose and Aroclor 1254 produced no changes. Plasma T3 levels were not affected by these compounds. Hepatic type I deiodinase (D1) activity was depressed by a lower dose of Endosulfan and hepatic type III (D3) activity was increased following 35 days of exposure to the lower dose of Endosulfan and following 21 and 35 days of exposure to Aroclor 1254; while type II (D2) remained unchanged in liver as well as in all other organs analysed. Apart from hepatic D3 activity, Endosulfan and Aroclor 1254 also increased D3 activity in gill, but not in other tested organs. It is concluded that dietary exposure of tilapia to Endosulfan or Aroclor 1254 can lead to changes in circulating thyroid hormone levels and/or in peripheral thyroid hormone metabolism. The changes in hormone metabolism differ between tissues, eventually reflecting tissue-specific differences in adaptation.  相似文献   

19.
In vertebrates, hormones released from the thyroid gland travel in the circulation to target tissues where they may be processed by deiodinating enzymes into more active or inactive iodothyronines. In mammals, there are three deiodinating enzymes described. Type1 (D1), which primarily occurs in the liver, converts reverse T3 into T2 for clearance. It also converts T4 into T3. This production of T3 is believed to contribute to the bulk of circulating T3 in mammals. The type2 (D2) enzyme may be found in many other tissues where it converts T4 to T3, which is then transferred to the receptors in the nucleus of the same cell, i.e. does not contribute to the circulating T3. The type3 (D3) enzyme converts T3 into T2. The expression of the genes for these three enzymes and/or the activity of the enzymes have been studied in several non-mammalian groups of vertebrates. From agnathans to birds, D2 and D3 appear to occur universally, with the possible exception of squamate reptiles (lack D2?). D1 has not been found in amphibians, lungfish or agnathans. All three enzymes are selenoproteins, in which a selenocysteine is found in the active centre. The nucleotide code for translation of a selenocysteine is UGA, which under normal circumstances is a stop codon. In order for UGA to code for selenocysteine, there must be a SECIS element in the 3′UTR of the mRNA. Any disruption of the SECIS will result in a truncated protein in the region of its active centre. It is suggested that such alternative splicing may be a mode of altering the expression of deiodinases in particular tissues to change the response of such tissues to thyroid hormones under differing circumstances such as stages of development.  相似文献   

20.
Hepatic iodothyronine deiodinases (Ds) are involved in the conversion of thyroid hormones (THs) which interacts with growth hormone (GH) to regulate posthatch growth in the chicken. Previous studies suggest that leptin-like immunoreactive substance deposited in the egg may serve as a maternal signal to program posthatch growth. To test the hypothesis that maternal leptin may affect early posthatch growth through modifying hepatic activation of THs, we injected 5.0μg of recombinant murine leptin into the albumen of breeder eggs before incubation. Furthermore, chicken embryo hepatocytes (CEHs) were treated with leptin in vitro to reveal the direct effect of leptin on expression and activity of Ds. In ovo leptin administration markedly accelerated early posthatch growth, elevated serum levels of total and free triiodothyronine (tT3 and fT3), while that of total thyroxin (tT4) remained unchanged. Hepatic mRNA expression and activity of D1 which converts T4 to T3 or rT3 to T2, were significantly increased in leptin-treated chickens, while those of D3 which converts T3 to T2 or T4 to rT3, were significantly decreased. Moreover, hepatic expression of GHR and IGF-I mRNA was all up-regulated in leptin-treated chickens. Males demonstrated more pronounced responses. A direct effect of leptin on Ds was shown in CEHs cultured in vitro. Expression and activity of D1 were increased, whereas those of D3 were decreased, in leptin-treated cells. These data suggest that in ovo leptin administration improves early posthatch growth, in a gender-specific fashion, probably through improving hepatic activation of THs and up-regulating hepatic expression of GHR and IGF-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号