首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for identification of fragments with high local similarity to human proteins within potentially immunopathogenic regions of HIV-1 proteins was developed. The method is based on the use of an original matrix of antigenic similarity of amino acids. The regions whose fragments are frequent in human proteins, and regions exhibiting high similarity to the proteins responsible for important physiological functions, were identified in HIV-1 proteins. A possibility of participation of such regions in immunopathogenesis of HIV infection either through induction of cross-reacting effectors of the immune system or through molecular mimicry of physiologically important human proteins, leading to alteration of homeostasis of the organism, is discussed. Most of the regions identified in HIV-1 proteins contain either T-cell (CD8+ CTL or CD4+ Th) or B-cell epitopes, or both of them simultaneously. The criteria for the design of safe polyepitopic antiviral vaccines that would allow exclusion of epitopes with (immuno)pathogenic potential are discussed. According to these criteria, polyepitopic immunogens should be free of the virus protein regions whose fragments are frequent in human proteins, as well as of regions exhibiting pronounced local similarity to proteins that provide for important physiological functions.  相似文献   

2.
To detect HLA-binding peptides in 10 HIV-1 proteins (Rev, Tat, Vif, Vpr, Vpu, Gag p18, Gag p24, Gag p15, Env gp120 and Env gp41), the peptide binding assay (PBA) has been performed using three HLA class I molecules. Correlations have been searched between the PBA results and the peptide competitor activity in a functional test using HLA-A2-restricted CTL and target cells. A correlation between the data found in the PBA and well-defined CTL epitopes could be attempted only for the three Gag proteins. For these proteins, our results are in agreement with the known existence of epitopes reacting with human CD8+ CTL, with some exceptions. Together with the results reported with a panel of Nef peptides, these experiments showed that at least 18/20 of the already reported CTL epitopes from HIV-1 Gag, Nef, and Env proteins could be detected by the PBA, most (17/18) corresponding to strong reactivities. Perhaps more important, the regions of HIV-1 Gag p24 or Nef proteins that contain multiple associated CTL epitopes, with different HLA restrictions, were clearly identified by the reactivities in the PBA of several overlapping peptides and the major practical interest of the PBA might be the detection of such polyepitopic regions. Prediction are proposed in this report for 10 proteins, including several proteins for which CTL epitopes remain presently unknown.  相似文献   

3.
The physical association of HLA class I or H-2 molecules with 36 HIV-1 Nef synthetic peptides was studied using a direct peptide binding assay (PBA) in solid phase. To assess the functional significance of the PBA results, the Nef peptides were also tested for their ability to inhibit the lytic activity of human or murine CTL. The PBA results showed that seven partly overlapping regions of the Nef protein contained MHC binding peptides (4-18, 46-67, 73-94, 100-128, 126-155, 182-198, and 192-206). Five of these seven regions included all the already described epitopes recognized by CD8+ human CTL. The two other regions, 4-18 and 46-67, are not yet described as antigenic for human CD8+ cells but they are located in the N-terminal part of Nef that was previously described as being stimulator for rat or chimpanzee CD4+ cells. Altogether, it can be concluded that 1) In virtually 100% of the cases, the PBA is capable to detect known antigenic peptides recognized by CTL. 2) The PBA and the functional inhibition assay provide similar results, supporting the functional significance of PBA results. 3) The PBA is easy to handle on a large scale, using multiple peptide and several MHC molecules, so that it can be used as a routine method for prevision of possibly epitopic sequences. 4) Systematic studies of peptides issued from the whole sequence of a given protein allow to map polyepitopic areas that are probably the most interesting parts of proteins for a vaccine purpose.  相似文献   

4.
The HIV-1 regulatory proteins Tat and Rev and the accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by cytotoxic T lymphocytes. However, only limited data is available evaluating to which extent these proteins are targeted in natural infection and optimal cytotoxic T lymphocyte (CTL) epitopes within these proteins have not been defined. In this study, CTL responses against HIV-1 Tat, Rev, Vpr, Vpu, and Vif were analyzed in 70 HIV-1 infected individuals and 10 HIV-1 negative controls using overlapping peptides spanning the entire proteins. Peptide-specific interferon-gamma (IFN-gamma) production was measured by Elispot assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8+ T-cell lines. All regulatory and accessory proteins served as targets for HIV-1- specific CTL and multiple CTL epitopes were identified in functionally important regions of these proteins. In certain individuals HIV-1-specific CD8+ T-cell responses to these accessory and regulatory proteins contributed up to a third to the magnitude of the total HIV-1-specific CTL response. These data indicate that despite the small size of these proteins regulatory and accessory proteins are targeted by CTL in natural HIV-1 infection, and contribute importantly to the total HIV-1-specific CD8+ T-cell responses. These findings are relevant for the evaluation of the specificity and breadth of immune responses during acute and chronic#10; infection, and will be useful for the design and testing of candidate human immunodeficiency virus (HIV) vaccines.  相似文献   

5.
Genetic modification of vaccines by linking the Ag to lysosomal or endosomal targeting signals has been used to route Ags into MHC class II processing compartments for improvement of CD4+ T cell responses. We report in this study that combining an N-terminal leader peptide with an MHC class I trafficking signal (MITD) attached to the C terminus of the Ag strongly improves the presentation of MHC class I and class II epitopes in human and murine dendritic cells (DCs). Such chimeric fusion proteins display a maturation state-dependent subcellular distribution pattern in immature and mature DCs, mimicking the dynamic trafficking properties of MHC molecules. T cell response analysis in vitro and in mice immunized with DCs transfected with Ag-encoding RNA showed that MITD fusion proteins have a profoundly higher stimulatory capacity than wild-type controls. This results in efficient expansion of Ag-specific CD8+ and CD4+ T cells and improved effector functions. We used CMVpp65 and NY-ESO-1 Ags to study preformed immune responses in CMV-seropositive individuals and cancer patients. We show that linking these Ags to the MITD trafficking signal allows simultaneous, polyepitopic expansion of CD8+ and CD4+ T cells, resulting in distinct CD8+ T cell specificities and a surprisingly broad and variable Ag-specific CD4+ repertoire in different individuals.  相似文献   

6.
We found that the proteome of apoptotic T cells includes prominent fragments of cellular proteins generated by caspases and that a high proportion of distinct T cell epitopes in these fragments is recognized by CD8+ T cells during HIV infection. The frequencies of effector CD8+ T cells that are specific for apoptosis-dependent epitopes correlate with the frequency of circulating apoptotic CD4+ T cells in HIV-1-infected individuals. We propose that these self-reactive effector CD8+ T cells may contribute to the systemic immune activation during chronic HIV infection. The caspase-dependent cleavage of proteins associated with apoptotic cells has a key role in the induction of self-reactive CD8+ T cell responses, as the caspase-cleaved fragments are efficiently targeted to the processing machinery and are cross-presented by dendritic cells. These findings demonstrate a previously undescribed role for caspases in immunopathology.  相似文献   

7.
A successful HIV vaccine in addition to induction of antibody responses should elicit effective T cell responses. Here we described possible strategies for rational design of T-cell vaccine capable to induce high levels of both CD4+ and CD8+ T- cell responses. We developed artificial HIV-1 polyepitope T-cell immunogens based on the conserved natural CD8+ and CD4+ T cell epitopes from different HIV-1 strains and restricted by the most frequent major human leukocyte antigen (HLA) alleles. Designed immunogens contain optimized core polyepitope sequence and additional “signal” sequences which increase epitope processing and presentation to CD8+ and CD4+ T-lymphocytes: N-terminal ubiquitin, N-terminal signal peptide and C-terminal tyrosine motif of LAMP-1 protein. As a result we engineered three T cell immunogens – TCI-N, TCI-N2, and TCI-N3, with different combinations of signal sequences. All designed immunogens were able to elicit HIV-specific CD4+ and CD8+ T cell responses following immunization. Attachment of either ubiquitin or ER-signal/LAMP-1 sequences increased both CD4+ and CD8+ mediated HIV-specific T cell responses in comparison with polyepitope immunogen without any additional signal sequences. Moreover, TCI-N3 polyepitope immunogen with ubiquitin generated highest magnitude of HIV-specific CD4+ and CD8+ T cell responses in our study. Obtained data suggests that attachment of signal sequences targeting polyepitope immunogens to either MHC class I or MHC class II presentation pathways may improve immunogenicity of T-cell vaccines. These results support the strategy of the rational T cell immunogen design and contribute to the development of effective HIV-1 vaccine.  相似文献   

8.
9.
The regulatory proteins Nef, Rev, and Tat of human immunodeficiency virus type 1 (HIV-1) are attractive targets for vaccine development, since induction of effective immune responses targeting these early proteins may best control virus replication. Here we investigated whether vaccination with biologically active Tat or inactive Tat toxoid derived from HIV-1(IIIB) and simian-human immunodeficiency virus (SHIV) strain 89.6p would induce protective immunity in rhesus macaques. Vaccination induced high titers of anti-Tat immunoglobulin G in all immunized animals by week 7, but titers were somewhat lower in the 89.6p Tat group. Dominant B-cell epitopes mapped to the amino terminus, the basic domain, and the carboxy-terminal region. Tat-specific T-helper responses were detected in 50% of immunized animals. T-cell epitopes appeared to map within amino acids (aa) 1 to 24 and aa 37 to 66. In addition, Tat-specific gamma interferon responses were detected in CD4+ and/or CD8+ T lymphocytes in 11 of 16 immunized animals on the day of challenge. However, all animals became infected upon intravenous challenge with 30 50% minimal infective doses of SHIV 89.6p, and there were no significant differences in viral loads or CD4+ T-cell counts between immunized and control animals. Thus, vaccination with HIV-1(IIIB) or SHIV 89.6p Tat or with Tat toxoid preparations failed to confer protection against SHIV 89.6p infection despite robust Tat-specific humoral and cellular immune responses in some animals. Given its apparent immunogenicity, Tat may be more effective as a component of a cocktail vaccine in combination with other regulatory and/or structural proteins of HIV-1.  相似文献   

10.
It is well-known that HIV-1 infection results in a gradual decline of the CD4+ T-lymphocytes, but the underlying mechanism of this decline is not completely understood. Research has shown that HIV-1 infection of CD4+ T cells results in decreased CD28 expression, but the mechanism of this repression is unknown. There is also substantial evidence demonstrating regulatory involvement of microRNA (miRNA) during protein expression in plants and some animals, and reports have recently been published confirming the existence of viral-encoded miRNAs. Based on these findings, we hypothesize that viral-encoded miRNA from HIV-1 may directly alter T cell, macrophage and dendritic cell activity. To investigate a potential correlation between the genomic complementarity of HIV-1 and host cell protein expression, a local alignment search was performed to assess for regions of complementarity between the HIV-1 proviral genome and the mRNA coding sequence of various proteins expressed by CD+ T cells and macrophages. Regions of complementarity with strong correlations to the currently established criteria for miRNA:target mRNA activity were found between HIV-1 and CD28, CTLA-4 and some interleukins, suggesting that HIV-1 may produce translational repression in host cells.  相似文献   

11.
We have examined the exposure and conservation of antigenic epitopes on the surface envelope glycoproteins (gp120 and gp41) of 26 intact, native, primary human immunodeficiency virus type 1 (HIV-1) group M virions of clades A to H. For this, 47 monoclonal antibodies (MAbs) derived from HIV-1-infected patients were used which were directed at epitopes of gp120 (specifically V2, C2, V3, the CD4-binding domain [CD4bd], and C5) and epitopes of gp41 (clusters I and II). Of the five regions within gp120 examined, MAbs bound best to epitopes in the V3 and C5 regions. Only moderate to weak binding was observed by most MAbs to epitopes in the V2, C2, and CD4bd regions. Two anti-gp41 cluster I MAbs targeted to a region near the tip of the hydrophilic immunodominant domain bound strongly to >90% of isolates tested. On the other hand, binding of anti-gp41 cluster II MAbs was poor to moderate at best. Binding was dependent on conformational as well as linear structures on the envelope proteins of the virions. Further studies of neutralization demonstrated that MAbs that bound to virions did not always neutralize but all MAbs that neutralized bound to the homologous virus. This study demonstrates that epitopes in the V3 and C5 regions of gp120 and in the cluster I region of gp41 are well exposed on the surface of intact, native, primary HIV-1 isolates and that cross-reactive epitopes in these regions are shared by many viruses from clades A to H. However, only a limited number of MAbs to these epitopes on the surface of HIV-1 isolates can neutralize primary isolates.  相似文献   

12.
Vpr is preferentially targeted by CTL during HIV-1 infection   总被引:11,自引:0,他引:11  
The HIV-1 accessory proteins Vpr, Vpu, and Vif are essential for viral replication, and their cytoplasmic production suggests that they should be processed for recognition by CTLs. However, the extent to which these proteins are targeted in natural infection, as well as precise CTL epitopes within them, remains to be defined. In this study, CTL responses against HIV-1 Vpr, Vpu, and Vif were analyzed in 60 HIV-1-infected individuals and 10 HIV-1-negative controls using overlapping peptides spanning the entire proteins. Peptide-specific IFN-gamma production was measured by ELISPOT assay and flow-based intracellular cytokine quantification. HLA class I restriction and cytotoxic activity were confirmed after isolation of peptide-specific CD8(+) T cell lines. CD8(+) T cell responses against Vpr, Vpu, and Vif were found in 45%, 2%, and 33% of HIV-1-infected individuals, respectively. Multiple CTL epitopes were identified in functionally important regions of HIV-1 Vpr and Vif. Moreover, in infected individuals in whom the breadth of HIV-1-specific responses was assessed comprehensively, Vpr and p17 were the most preferentially targeted proteins per unit length by CD8(+) T cells. These data indicate that despite the small size of these proteins Vif and Vpr are frequently targeted by CTL in natural HIV-1 infection and contribute importantly to the total HIV-1-specific CD8(+) T cell responses. These findings will be important in evaluating the specificity and breadth of immune responses during acute and chronic infection, and in the design and testing of candidate HIV vaccines.  相似文献   

13.
HIV-1 Ag-specific CD4(+) T cell proliferative responses in human subjects with advanced, untreated HIV-1 disease are often weak or undetectable. Conversely, HIV-1-specific CD4(+) T cell proliferation is occasionally detected following suppression of HIV-1 replication with highly active antiretroviral therapy (HAART). These observations suggest that unchecked HIV-1 replication may lead to depletion or dysfunction of HIV-1-specific CD4(+) T cells, and that these defects may be partially corrected by viral suppression and subsequent immune reconstitution. However, the impact of this immune reconstitution on the repertoire of HIV-1-specific CD4(+) T cells has not been thoroughly evaluated. To examine the HIV-1-specific CD4(+) T cell repertoire in this clinical setting, we established HIV-1 p24-specific CD4(+) T cell clones from a successfully HAART-treated subject whose pretreatment peripheral CD4 count was 0 cells/ micro l. Eleven different p24-specific CD4(+) T cell clonotypes were distinguished among 13 clones obtained. Most clones produced both IFN-gamma and IL-4 upon Ag stimulation. Clones targeted eight distinct epitopes that varied in their conservancy among HIV-1 strains, and responses were restricted by one of three MHC II molecules. Clones showed a range of functional avidities for both protein and peptide Ags. Additional studies confirmed that multiple HIV-1 p24-derived epitopes were targeted by IFN-gamma-producing CD4(+) cells from subjects first treated with HAART during advanced HIV-1 disease (median, 4.5 peptides/subject; range, 3-6). These results suggest that in HAART-treated subjects whose peripheral CD4(+) T cell pools were once severely depleted, the HIV-1-specific CD4(+) T cell repertoire may include a diverse array of clonotypes targeting multiple HIV-1 epitopes.  相似文献   

14.
To determine the influence of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells on the development of drug resistance mutations in the HIV-1 protease, we analyzed protease sequences from viruses from a human leukocyte antigen class I (HLA class I)-typed cohort of 94 HIV-1-positive individuals. In univariate statistical analyses (Fisher's exact test), minor and major drug resistance mutations as well as drug-associated polymorphisms showed associations with HLA class I alleles. All correlations with P values of 0.05 or less were considered to be relevant without corrections for multiple tests. A subset of these observed correlations was experimentally validated by enzyme-linked immunospot assays, allowing the definition of 10 new epitopes recognized by CD8+ T cells from patients with the appropriate HLA class I type. Several drug resistance-associated mutations in the protease acted as escape mutations; however, cells from many patients were still able to generate CD8+ T cells targeting the escape mutants. This result presumably indicates the usage of different T-cell receptors by CD8+ T cells targeting these epitopes in these patients. Our results support a fundamental role for HLA class I-restricted immune responses in shaping the sequence of the HIV-1 protease in vivo. This role may have important clinical implications both for the understanding of drug resistance pathways and for the design of therapeutic vaccines targeting drug-resistant HIV-1.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.  相似文献   

16.
It is believed that Nef-mediated HLA class I down-regulation is one of the mechanisms that allow HIV-1-infected cells to escape from being killed by HIV-1-specific human CTLs. In this study, we show that the effect of Nef-mediated HLA class I down-regulation on the ability of HIV-1-specific CTLs to suppress HIV-1 replication is epitope dependent. The CTLs specific for two Pol epitopes presented by HLA-B*5101, one of the HLA alleles associated with slow progression to AIDS, effectively killed HIV-1-infected CD4+ T cells and suppressed HIV-1 replication. In contrast, those specific for the other four epitopes failed to kill HIV-1-infected CD4+ T cells and partially or hardly suppressed HIV-1 replication. The difference of the ability between these two types of CTLs may result from the difference of the number of HLA class I epitope complex on the surface of NL-432-infected CD4+ T cells.  相似文献   

17.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

18.
19.
20.
Three moderately to broadly recognized equine infectious anemia virus (EIAV) peptides that contained helper T-lymphocyte (Th) 1 epitopes were previously identified. Although lipopeptide immunization was only weakly immunostimulatory in a preliminary study, as measured by T-lymphocyte proliferation responses, it was of interest to define additional broadly recognized Th1 epitopes to include in future immunization trials. Using broadly cross-reactive and conserved Th epitopes known in the related human immunodeficiency virus-1 (HIV-1) and binding motifs defined in human leukocyte antigen DR molecules as guides, this work identified three new peptides containing Th1 epitopes recognized by 60–75% of EIAV infected horses. The observed similarity across species of major histocompatibility complex (MHC) class II binding motifs and the conservation of Th peptides between related viruses should allow easier targeting of Th epitope regions in less well characterized pathogens and/or in species whose MHC class II molecules are poorly defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号