首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of the region between map positions 8.0 (HindIII site) and 11.8 (SmaI site) of adenovirus type 5 (Ad5) has been determined. Together with the sequences reported earlier (Van Ormondt et al., 1978; Maat and Van Ormondt, 1979) it encompasses the entire leftmost early region E1 of Ad5 DNA (4126 base pairs). The total sequence revealed a number of potential regulatory signals (promoter sites, ribosome binding sites, 3'-poly(A)-associated sequences), which confirm that region E1 is divided into subregions, E1a and E1b, and a region coding for semi-late viral protein IX. By taking into account the adenovirus 2 (Ad2) RNA-splicing data of Perricaudet et al. (1979; 1980) and the Ad2 RNA mapping data of Chow et al. (1979) we predict that E1a codes for polypeptides of 32, 26 and ca. 13 kd, and subregion E1b for polypeptides of 67 kd and 20 kd; the expected molecular weight of protein IX is 14.4 kd.  相似文献   

2.
Gene organization of the transforming region of adenovirus type 7 DNA   总被引:8,自引:0,他引:8  
R Dijkema  B M Dekker  H van Ormondt 《Gene》1982,18(2):143-156
The sequence of the leftmost 11% of the weakly oncogenic human adenovirus type 7 (Ad7) DNA has been determined. This part of the Ad7 viral genome encompasses early region E1 which has been shown to be involved in the process of cell transformation in vitro (Dijkema et al., 1979). From the nucleotide sequence and determined coordinates of the E1 mRNAs, we are able to predict the primary structure of the polypeptides encoded by the transforming region of Ad7. The organization of the E1 region of Ad7 and of other adenovirus serotypes (Bos et al. 1981) leads to the proposal of a novel mechanism for gene regulation at the translational level in which protein synthesis can initiate at either the first or the second AUG triplet available in mRNA. The differences between the large E1b-specific tumor antigens of adenovirus types 12, 7 and 5 may explain the differences in oncogenicity of these viruses.  相似文献   

3.
4.
H van Ormondt  J Maat  C P van Beveren 《Gene》1980,11(3-4):299-309
The sequence of the leftmost 11.3% of the non-oncogenic human adenovirus type 5 (Ad5) DNA has been determined. This segment contains the entire early region E1 of the Ad5 genome which has been shown to be involved in in vitro transformation of non-permissive rodent cells (Van der Eb et al., 1980). From the DNA sequence, and from the mRNA sequence data obtained by Perricaudet et al, (1979, 1980) for the E1 mRNAs from the closely related adenovirus type 2 (Ad2), it is possible to predict the primary structure of the polypeptides encoded by this region. The function of these proteins in cell transformation is discussed. From the positions of mapped restriction endonuclease sites and termini of RNA segments in the nucleotide sequence the length of the Ad5 DNA is estimated to be 36.6 kb.  相似文献   

5.
《Gene》1997,185(2):181-186
Bovine adenovirus type 2 (BAV2) is a medium size double-stranded DNA virus which infects both bovine and ovine species, resulting in mild respiratory and gastrointestinal disorders. To better understand the virus and its growth characterisitics in Madin-Darby bovine kidney (MDBK) cells, we have cloned and sequenced the extreme right-end segment of the BAV2 genome (90.5–100 map units). Analysis of the nucleotide sequence revealed 40 potential open reading frames (ORFs) with coding capacity for polypeptides that are 25 or more amino acid (aa) residues long. Six of these ORFs encode polypeptides that show homology to well-characterized early region 4 (E4) proteins of human adenovirus type 2 (Ad2) and Ad12. ORF1 has the potential to encode a 114 aa long polypeptide that is 54% homologous to the E4 14 kDa protein of Ad2. ORF2 encodes a 78 aa long polypeptide that exhibits 40% homology to the E4 13 kDa protein of Ad2. ORFs 3–6 encode polypeptides that have homology to the E4 34 kDa protein encoded by ORF6 of Ad2 and Ad12. ORFs 3, 4 and 5 encode 128, 96 and 31 aa long polypeptides, respectively. The 128-aa polypeptide exhibits 59% homology, while the 96 and 31 aa long polypeptides exhibit 61% and 70% homology to the E4 34 kDa protein, respectively. ORF6 has the potential to encode a 57 aa long polypeptide that has 67% homology to the E4 34 kDa protein of Ad2 and 50% homology to the E4 34 kDa protein of Ad12.  相似文献   

6.
We have constructed a nondefective recombinant virus between the nononcogenic adenovirus 5 (Ad5) and the highly oncogenic Ad12. The recombinant genome consists essentially of Ad5 sequences, with the exception of the transforming early region 1 (E1) which is derived from Ad12. HeLa cells infected with the recombinant virus were shown to contain the Ad12-specific E1 proteins of 41 kilodaltons (E1a) and 19 and 54 kilodaltons (both encoded by E1b). The recombinant virus replicated efficiently in human embryonic kidney cells and HeLa cells, showing that the transforming regions of Ad5 and Ad12 had similar functions in productive infection. After the recombinant virus was injected into newborn hamsters, no tumors were produced during an observation period of 200 days. Thus, despite the fact that all products required for oncogenic transformation in vitro were derived from the highly oncogenic Ad12, the recombinant virus did not produce tumors in vivo. These data show that tumor induction by adenovirus virions is not determined only by the gene products of the transforming region.  相似文献   

7.
A function involved in the inhibition of DNA degradation has been assigned through complementation tests to a product of region E1b of the adenovirus genome (between 4.5 and 10.5 map units). DNA degradation induced by the adenovirus type 12 (Ad12) cyt mutant H12cyt70 and the Ad5 early deletion mutant dl313 (with the deletion between 3.5 and 10.7 map units) was inhibited by coinfection with Ad5 region E1a (between 0 and 4.5 map units) mutants dl312 and hr1 and region E1b mutant hr6. The defect of inhibition of DNA degradation in Ad5 dl313 was also complemented in 293 cells. This DNase-inhibitory function does not appear to involve polypeptide IX or the 58,000-dalton polypeptide. Wild-type Ad12 induced DNA degradation in hamster embryo cells, suggesting that the DNase-inhibitory function is not expressed in these nonpermissive cells. Additional evidence suggests the involvement of a second viral product which positively influences the DNase activity and which appears to be an early function.  相似文献   

8.
An essential oncogenic determinant of subgroup D human adenovirus type 9 (Ad9), which uniquely elicits estrogen-dependent mammary tumors in rats, is encoded by early region 4 open reading frame 1 (E4 ORF1). Whereas Ad9 E4 ORF1 efficiently induces transformed foci on the established rat embryo fibroblast cell line CREF, the related subgroup A Ad12 and subgroup C Ad5 E4 ORF1s do not (R. T. Javier, J. Virol. 68:3917-3924, 1994). In this study, we found that the lack of transforming activity associated with non-subgroup D adenovirus E4 ORF1s in CREF cells correlated with significantly reduced protein levels compared to Ad9 E4 ORF1 in these cells. In the human cell line TE85, however, the non-subgroup D adenovirus E4 ORF1s produced protein levels higher than those seen in CREF cells as well as transforming activities similar to that of Ad9 E4 ORF1, suggesting that all adenovirus E4 ORF1 polypeptides possess comparable cellular growth-transforming activities. In addition, searches for known proteins related to these novel viral transforming proteins revealed that the E4 ORF1 proteins had weak sequence similarity, over the entire length of the E4 ORF1 polypeptides, with a variety of organismal and viral dUTP pyrophosphatase (dUTPase) enzymes. Even though adenovirus E4 ORF1 proteins lacked conserved protein motifs of dUTPase enzymes or detectable enzymatic activity, E4 ORF1 and dUTPase proteins were predicted to possess strikingly similar secondary structure arrangements. It was also established that an avian adenovirus protein, encoded within a genomic location analogous to that of the human adenovirus E4 ORF1s, was a genuine dUTPase enzyme. Although no functional similarity was found for the E4 ORF1 and dUTPase proteins, we propose that human adenovirus E4 ORF1 genes have evolved from an ancestral adenovirus dUTPase and, from this structural framework, developed novel transforming properties.  相似文献   

9.
Structure and gene organization in the transformed Hind III-G fragment of Ad12   总被引:41,自引:0,他引:41  
The nucleotide sequence of the transforming Hind III-G fragment of Ad12 DNA which encompasses the left 6.8% of the genome has been determined. The fragment was 2320 nucleotides long, and contained a GC cluster at positions 126-155 and a region extremely rich in AT at positions 1098-1142 (number from the leftmost end). Possible coding regions for the two transforming gene products were assigned. The predicted coding region for T antigen g is positions 502-1069 and positions 1144-1373, which are joined by splicing (266 amino acid residues, 30 kd), and that for T antigen f is positions 1845-2126 (94 amino acid residues, 10 kd). The sequence of the Hind III-G fragment was compared with that of the transforming DNA fragment of Ad5 which encompasses the left 8.0% of the genome (2809 nucleotides). There are several discrete regions with significant sequence homology. The comparison suggests that the regions in the left two thirds of the Ad5 and Ad12 transforming DNA fragments (map units 0-4.7% in Ad5 and 0-4.4% in Ad12) bear some resemblance in their gene organizations, and code for proteins containing structurally homologous regions.  相似文献   

10.
11.
We have cloned the entire human adenovirus type 5 (Ad5) genome into the pBR322 plasmid in two segments: the BamHI-A fragment (21 kb) and the BamHI-B fragment (15 kb). We have also generated a series of clones with smaller Ad5 DNA inserts, all containing the left-end of the viral genome. One such clone, pXCl, containing the left 16% of the Ad5 DNA molecule, has been shown to transform rodent cells by DNA transfection. We have used the transposable element Tn5 as an insertion mutator to isolate pXCl mutants containing Tn 5 inserted at a large number of sites. By assaying transforming activity of selected pXC::Tn5 plasmids we have identified Ad5 sequences which are essential for DNA-mediated transformation. Our results with these mutants and with a plasmid pCDl, containing a deletion within the Ad5-transforming region, indicate that sequences present in both early region la and the N-terminal region of early region 1b are essential for DNA-mediated transformation.  相似文献   

12.
J A Engler  M S Hoppe  M P van Bree 《Gene》1983,21(1-2):145-159
The nucleotide sequence of a cloned DNA segment encoding the early region 2b from the group B human adenovirus Ad7 has been determined. When compared to Ad2, a group C adenovirus, these sequences were found to be approx. 80% homologous within the l-strand gene-coding regions. Most changes are transitions or transversions, although several deletions/insertions also occur within the N-terminal domain of one of the coding regions. The substantial nucleotide homology results in a high degree of amino acid conservation in the predicted polypeptides encoded by the early region 2b genes. Two major open reading frames, corresponding to the Mr 87000 and Mr 140000 polypeptides of Ad2, are found in the l strand of Ad7 between genome coordinates 28.5 to 23.1 and 13.8, respectively. The r strand of the DNA in this region encodes the three leader segments joined to the 5' end of the most late viral mRNAs, and also encodes the i-leader segment found between the second and third leaders on some mRNAs. The positions of the donor and acceptor splice sites of the three leaders are conserved and can be identified by homology to Ad2. Only two of the unidentified open reading frames (URF) in Ad2 (Gingeras et al., J. Biol. Chem., in press) can be found in Ad7. URF1, encoding an Mr 13500 polypeptide at genome coordinate 17, is predominantly conserved in nucleotide and amino acid sequence, but contains one half as many arginine amino acids as does URF1 of Ad2. URF2, encoding an Mr 13600 protein which lies within the i-leader region, is not well conserved in either nucleotide or amino acid sequence.  相似文献   

13.
Baby rat kidney (BRK) cells were transfected either with intact region E1 DNA of adenovirus type 5 (Ad5) or with mixtures of DNA fragments containing the separated E1a and E1b regions. The results showed that mixtures of regions E1a and E1b transform with a similar efficiency as intact region E1. DNA fragments containing region E1b alone have no detectable transforming activity in primary BRK cells nor in established rat cell lines. When region E1a and Ad5 was combined with region E1b and Ad12 complete transformation was also obtained. Characterization of the cell lines transformed by separated E1a and E1b regions have led to the following conclusions: (1) Expression of region E1b is not dependent on specific linkage to region E1a as it occurs in the intact E1 region. (2) Region E1b is normally expressed into the corresponding major adenovirus T antigens (65,000 and 19,000 Mr with region E1b of Ad5; 60,000 and 19,000 Mr with E1b or AD12). (3) Region E1b of Ad12 can be activated by region E1a of Ad5 indicating that the Ela regions of both serotypes are functionally similar in transformation. (4) Cell lines containing region E1b of Ad5 are weakly oncogenic in nude mice whereas cells containing E1b of Ad12 are highly oncogenic in nude mice, indicating that the degree of oncogenicity is determined by region E1b.  相似文献   

14.
The primary structure of the HpaI-E fragment of adenovirus type 5 (Ad5) DNA has been determined, mainly by the method of Maxam and Gilbert (1977). This fragment comprises the leftmost 4.5% of the Ad5 genome, and has been shown to be the shortest DNA fragment capable of transforming cells. The identification of potential initiation and termination codons in the determined sequence indicates that two small polypeptides consisting of 186, and 81 amino acids, respectively, could be synthesized. Taking into account recent data on RNA splicing, a possibility is considered that this DNA may code also for larger polypeptides.  相似文献   

15.
L M Shu  J S Hong  Y F Wei  J A Engler 《Gene》1986,46(2-3):187-195
The nucleotide (nt) sequence of a cloned DNA segment containing the early 2b region of the class A adenovirus Ad12 has been determined. When compared to the corresponding region of Ad2 or Ad7, there is a high degree of nt and predicted amino acid (aa) sequence homology within the r-strand regions that encode the preterminal protein and the viral DNA polymerase. A gene coding region comparable to the Mr 13,600 gene product found in Ad2 can be identified; this hypothetical gene product shares 30% aa homology with its Ad2 counterpart and has a very similar hydropathy profile.  相似文献   

16.
A DNA segment carrying viral DNA was cloned from a rat cell line transformed by the cloned EcoRI-C fragment (0 to 16.4 map units) of human adenovirus type 12(Ad12), and the viral sequence in the clone was analysed. The cloned segment contained the region from nucleotide positions 118 to 3520 of the Ad12 genome in the middle. No unique structure was found at the viral and non-viral DNA junctions. When examined the transforming activity, the conserved viral sequence was able to transform rat 3Y1 cells efficiently. Southern blotting analysis of the viral sequence in five re-transformed cell lines showed that the viral sequence was inserted at different sites of cellular DNA. These results indicate that (I) the Ad12 DNA moiety from the enhancer-promoter region of the E1A gene to the end of the E1B gene contains enough information for efficient transformation of the rat cell, and (II) integration of the viral sequence at unique cellular sites is not prerequisite for transformation.  相似文献   

17.
U Weyer  W Doerfler 《The EMBO journal》1985,4(11):3015-3019
In hamster cells human adenovirus type 12 (Ad12) is deficient in DNA replication and late gene expression whereas adenovirus type 2 (Ad2) can replicate. Functions located in the E1 region of the Ad2 or adenovirus type 5 (Ad5) genome can complement the deficiencies of the Ad12 genome in hamster cells, but, infectious viral particles are not produced. We have now investigated the activity of the major late promoter of Ad2 and of Ad12 DNA in human and hamster cells. This promoter governs the expression of most of the late viral functions. We have inserted the major late promoter (MLP) of Ad2 or of Ad12 DNA in front of the chloramphenicol acetyl transferase gene in the pSVO-CAT construct. Upon transfection into uninfected human and hamster cells, the pAd12MLP-CAT construct shows no significant activity; the pAd2MLP-CAT construct exhibits low activity. In Ad12-infected human cells, both constructs are active. These findings support the notion that other viral factors are required for MLP activity of Ad2 or Ad12 DNA in permissive human cells. In Ad2-infected hamster cells, both the pAd2MLP-CAT and the pAd12MLP-CAT constructs are active. Apparently, the Ad12 MLP can be activated by Ad2 functions, as already demonstrated for the entire Ad12 genome in double-infected cells or in Ad2- or Ad5-transformed cells superinfected with Ad12. In Ad12-infected hamster cells, however, the MLP of Ad12 DNA is inactive but that of Ad2 DNA shows activity. Thus the MLP of Ad12 DNA somehow differentiates between cellular auxiliary functions of different species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Human adenovirus type 9 (Ad9) is unique among oncogenic adenoviruses in that it elicits exclusively mammary tumors in rats and requires the viral E4 region open reading frame 1 (9ORF1) gene for tumorigenicity. The 9ORF1 oncogenic determinant codes for a 14-kDa transforming protein, and three separate regions of this polypeptide, including one at the extreme C terminus, are necessary for transforming activity. In this study, we investigated whether the 9ORF1 transforming protein interacts with cellular factors. Following incubation with cell extracts, a glutathione S-transferase (GST)-9ORF1 fusion protein associated with several cellular phosphoproteins (p220, p180, p160, p155), whereas GST fusion proteins of transformation-defective 9ORF1 C-terminal mutants did not. Similar interactions requiring the 9ORF1 C terminus were revealed with protein-blotting assays, in which a GST-9ORF1 protein probe reacted specifically with cellular polypeptides having gel mobilities resembling those of the 9ORF1-associated cellular phosphoproteins, as well as with additional cellular polypeptides designated p140/p130. In addition, GST fusion proteins containing 9ORF1 C-terminal fragments associated with some of the 9ORF1-associated cellular polypeptides, as did GST fusion proteins of full-length wild-type Ad5 and Ad12 E4 ORF1 transforming proteins. Significantly, the results of coimmunoprecipitation analyses suggested that the same cellular polypeptides also associate with wild-type but not C-terminal-mutant 9ORF1 proteins in vivo. Together, these findings suggest that the 9ORF1 C terminus, which is essential for transformation, participates in specific and direct binding of the 9ORF1 oncoprotein to multiple cellular polypeptides. We propose that interactions with these cellular factors may be responsible, at least in part, for the transforming activity of the 9ORF1 viral oncoprotein.  相似文献   

19.
20.
Infection of primary baby rat kidney (BRK) cells with an adenovirus that carries an E1A 12S cDNA in place of the normal E1A region (adenovirus 5 [Ad5] 12S) resulted in the induction of cellular DNA synthesis and proliferation of the epithelial cells in the population, even in the absence of serum. Increased cellular DNA synthesis was first detectable by 12 h after infection and was maintained at a 10- to 20-fold higher level than in mock-infected cells. By 5 days after infection there was a 10-fold-greater number of 12S virus-infected BRK cells. These infected BRK cells retained many of their normal epithelial cell characteristics and were not transformed. The expression of the E1A 12S protein(s) occurred early after infection. There was no induction of adenoviral gene expression or viral DNA replication in these cells. The early effects of a fully transforming gene product(s) were also examined. The Ad5-simian virus 40 hybrid virus, Ad5.SVR4, in which the early region of simian virus 40 has replaced the E1 region of Ad5, was used to infect BRK cells. The kinetics of expression of the T antigens were similar to those of the 12S polypeptides. Infection with Ad5.SV4 also resulted in the induction of cellular DNA synthesis and cell proliferation at levels similar to those observed with the 12S virus. However, infection with Ad5.SVR4 resulted in cells that had lost some of their epithelial cell characteristics and were fully transformed. Thus, although the early cellular events induced by the two genes were similar, they did not yield the same final cellular phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号