首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of soil warming and nitrogen availability on root production, longevity and mortality were studied using minirhizotrons in irrigation (C), fertilized (F), heated (H), and heated‐fertilized (HF) plots in a Norway spruce stand in northern Sweden from October 1996 to October 1997. Irrigation was included in all treatment plots. Heating cables were used to maintain the soil temperature in heated plots at 5°C above that in unheated plots during the growing season. A Kaplan–Meier approach was used to estimate the longevity of fine roots and Cox proportional hazards regression to analyze the effects of the H, F, and HF treatments on the risk of root mortality. The proportion of annual root length production contributed by winter–spring production amounted to 52% and 49% in heated plots and heated‐fertilized plots, respectively. The annual root length production in C plots was significantly higher than in other treatments, while the HF treatment gave significantly greater production compared with the F treatment. The risk of mortality (hazard ratio) relative to C plots was higher in H plots (358%) and F plots (191%). The interaction between heating and fertilizing was strongly significant. The increase in the risk of root mortality in combined fertilization and heating (103%) was lower than that in the H or F plots. The results show that nitrogen addition combined with warmer temperatures decreases the risk of root mortality, and fine root production is a function of the length of the growing season. In the future, fertilization combined with the warmer temperatures expected to follow predicted climatic change may increase root production in boreal forests at low fertility sites.  相似文献   

2.
樟子松人工林细根寿命估计及影响因子研究   总被引:2,自引:1,他引:1       下载免费PDF全文
细根寿命的估计是了解细根生产和死亡的关键, 对了解陆地生态系统碳分配格局和养分循环具有重要意义。该研究采用微根管(minirhizotron)技术, 以23年生樟子松(Pinus sylvestris var. mongolica)人工林为研究对象, 对细根生长和死亡过程进行了连续两年的观测。细根寿命的估计采用Kaplan-Meier方法, 计算细根的平均寿命(mean longevity)、中值寿命(median longevity)和累积存活率(cumulative survival rate), 用对数秩检验(log-rank test)比较单一因素, 包括细根直径、根序、出生季节和土层以及菌根侵染对细根寿命的影响。采用Cox比例风险回归分析方法, 同时分析上述因素对细根存活的影响程度。结果表明, 樟子松细根的生产和死亡具有明显的季节性, 春末和夏季(6月和7月)为生产高峰; 而死亡高峰出现在夏末至秋末, 以及冬季。樟子松细根的平均和中值寿命分别为(322 ± 10)天和(310 ± 15)天, 对数秩检验表明, 仅考虑单一因子时, 细根直径、根序、出生季节和土层以及菌根侵染均对细根寿命有显著影响。Cox回归分析表明, 菌根侵染、细根直径和土层是影响樟子松细根寿命的重要因子。细根直径每增加1 mm, 细根死亡危险率就降低99%, 即相当于寿命延长99%; 细根出生土层每增加1 cm, 其寿命延长5%; 而菌根侵染后, 会导致细根死亡危险率增加175%; 但根序和出生季节的影响不显著。这些发现证实: 林木细根寿命受到内在与外在因素的共同控制, 而多变量回归分析的方法有助于我们全面揭示细根寿命变异的潜在机制。  相似文献   

3.
We studied effects of nitrogen, other nutrients and water (liquid fertilization; LF) on fine root dynamics (production, mortality) and life span of mycorrhizal short roots in a Norway spruce stand, using minirhizotrons. Data were collected and analyzed during a two-year period at depths of 0–20 cm, 21–40 cm and 41–85 cm, six years after the start of treatment. Relative to control (C), root production was lower in LF plots at depth 0–20 cm. Root production increased significantly at depth 41–85 cm. Fine root mortality in LF plots was higher at all depths. Life span of mycorrhizal short roots in LF plots was significantly lower than C plots and at the end of the study no mycorrhizal short roots were alive. It is suggested that the water and nitrogen input lower longevity of mycorrhizal short roots and promote fine root production at deeper soil layers.  相似文献   

4.
合理高效的水肥集约经营是有效地提高速生丰产林生产力的重要途径。细根是植物吸收水肥和维持生长的主要器官, 了解细根形态及其分布对水肥耦合措施的响应机制有助于解释树木生长和吸收水肥能力的差异性。该文基于水氮耦合措施对欧美108杨(Populus × euramericana ‘Guariento’)幼林表土层(0–30 cm)细根形态及分布的影响研究, 在连续两年的水氮管理后, 开展了欧美108杨0–60 cm土层细根形态及垂直分布对水氮耦合响应的研究。田间设计3个灌溉水平(灌溉土壤水势起始阈值为–75 kPa、–50 kPa、–25 kPa)和3个养分水平(施N 150 g·tree–1·a–1、300 g·tree–1·a–1、450 g·tree–1·a–1), 组合成9个水氮耦合处理, 另设1个对照处理(CK)。研究结果表明: (1)垂直方向上, 各处理细根生物量密度、表面积和平均直径均表现为10–20 cm土层最大(该层生物量密度占0–60 cm土层总生物量的27%–37%), 随后在30–60 cm土层逐层递减; 根长密度则随土壤深度的加深而逐层递减, 0–10 cm土层显著大于其他土层(该层根长密度占0–60 cm土层总根长密度的33%–45%)。(2) 6个土层的细根生物量密度、根长密度和平均直径均表现为高水高氮(D3F3)和中水高氮(D2F3) 2个处理间差异不显著, 但均显著高于其他处理, 其中, D3F3处理6个土层生物量密度是对照的3.12–47.74倍; 细根表面积则是D3F3处理显著高于其他处理, 是CK的4.36–30.57倍。(3)连续的水氮耦合管理措施不会改变细根的垂直分布格局(各处理均具有与CK一致的分布格局), 但在第二个生长季, 欧美108杨细根的整体分布随着林龄的增加趋于深层化; 另外, 中水高氮的耦合处理也可有效地促进细根的生长, 这种水氮需求水平与第一个生长季内需高水高氮才可显著促进其生长的特性不同。欧美108杨细根在第2个生长季主要分布于0–20 cm土层, 9个水氮耦合处理中, 除低水低氮处理外, 其他处理各细根形态指标值均显著高于CK, 这种差异性在浅土层更为显著, 而在深土层表现出相对较小的差异。当灌溉量一定时(尤其中、高灌溉水平), 增加施氮量可显著促进细根生长, 但当施氮量一定时(尤其低、中氮水平), 增加灌溉量对细根生长的促进效果不显著, 即欧美108杨细根生长趋肥性强于向水性。  相似文献   

5.
《植物生态学报》2015,39(8):825
Aims Irrigation and fertilization have great potentials to enhance yield in forest plantations. The integrated effect of water and nitrogen management on fine roots morphology and distribution of Populus × euramericana ‘Guariento’, however, remains unclear. The objective of this study was to evaluate the effect of water and nitrogen addition on fine root morphology and distribution in poplar plantations for developing the best water and nitrogen strategy for promoting fine root. Methods The soil core method was used to quantify the morphology and distribution of fine roots in the 0–60 cm in a poplar plantation with surface dripping irrigation and fertilization technologies. The experiment included nine treatments, which were a combination of three irrigation treatments where dripping irrigation was applied when soil water potential (ψsoil) reached –75, –50, or –25 kPa, and three fertilization treatments at nitrogen additions of 150, 300, or 450 g·tree–1·a–1, respectively). A control plot with non-irrigation and non-fertilizationtreatment in growing season (CK) was also included in the study. Important findings The fine roots biomass density, fine root surface area density, average root diameter in all treatments were mainly found at 0–10 cm and 10–20 cm depths, with root biomass density in the 10–20 cm of 1.03 to 1.21 times of that in the 0–10 cm, 1.25 to 1.80 times of that in the 20–30 cm, 1.62 to 22.10 times of that in the 30–40 cm, 2.77 to 54.35 times of that in the 40–50 cm, and 6.48 to 293.09 times of that in the 50–60 cm. The root biomass density in the 10–20 cm accounted for 27%–37% of the total biomass density in the top 60 cm. For root biomass density and average diameter, there were no significant differences between 0–10 cm and 10–20 cm depths, and between 40–50 cm and 50–60 cm depths. Fine roots in the irrigation and fertilization treatments were significantly higher than that of the CK, except the D1F1 treatment (i.e., with low water and low nitrogen level). Additionally, fine roots in the D2F3 treatment (i.e., with intermedia irrigation and high nitrogen level) and the D3F3 treatment (i.e., with high water and high nitrogen level) were significantly higher than those in other treatments, but not significantly different between D2F3 and D3F3. Compared with the CK, the fine roots biomass density in six soil layers were significantly enhanced at 359%, 388%, 328%, 3823%, 4774% and 2866%, respectively, for the treatment with high water and high nitrogen levels. The vertical distributions of fine roots appeared not affected by the interaction of irrigation and nitrogen addition. However, the surface dripping irrigation and fertilization treatments increased fine roots significantly. Finally, we found that the response of fine root growth and distribution was stronger to fertilization than to the irrigation in this poplar plantation.  相似文献   

6.
Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, although little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of the observed declines in SOC stocks.  相似文献   

7.
Soil freezing alters fine root dynamics in a northern hardwood forest   总被引:12,自引:1,他引:11  
The retention of nutrients within an ecosystem depends on temporal andspatial synchrony between nutrient availability and nutrient uptake, anddisruption of fine root processes can have dramatic impacts on nutrientretention within forest ecosystems. There is increasing evidence thatoverwinter climate can influence biogeochemical cycling belowground,perhaps by disrupting this synchrony. In this study, we experimentallyreduced snow accumulation in northern hardwood forest plots to examinethe effects of soil freezing on the dynamics of fine roots (< 1 mm diameter)measured using minirhizotrons. Snow removal treatment during therelatively mild winters of 1997–1998 and 1998–1999 induced mild freezingtemperatures (to –4 °C) lasting approximately three months atshallow soil depths (to –30 cm) in sugar maple and yellow birch stands.This treatment resulted in elevated overwinter fine root mortality in treatedcompared to reference plots of both species, and led to an earlier peak infine root production during the subsequent growing season. These shiftsin fine root dynamics increased fine root turnover but were not largeenough to significantly alter fine root biomass. No differences inmorality response were found between species. Laboratory tests on pottedtree seedlings exposed to controlled freezing regimes confirmed that mildfreezing temperatures (to –5 °C) were insufficient to directlyinjure winter-hardened fine roots of these species, suggesting that themarked response recorded in our forest plots was caused indirectly bymechanical damage to roots in frozen soil. Elevated fine root necromass intreated plots decomposed quickly, and may have contributed an excess fluxof about 0.5 g N/m2·yr, which is substantial relative tomeasurements of N fluxes from these plots. Our results suggest elevatedoverwinter mortality temporarily reduced fine root length in treatmentplots and reduced plant uptake, thereby disrupting the temporalsynchrony between nutrient availability and uptake and enhancing ratesof nitrification. Increased frequency of soil freezing events, as may occurwith global change, could alter fine root dynamics within the northernhardwood forest disrupting the normally tight coupling between nutrientmineralization and uptake.  相似文献   

8.
Fine roots (≤1 mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine the effects of elevated CO2 on production, mortality, and standing crops of fine root length over 2 years in a free‐air CO2 enrichment (FACE) facility in the Mojave Desert of southern Nevada, USA. Three replicate 25 m diameter FACE rings were maintained at ambient (~370 μmol mol?1) and elevated CO2 (~550 μmol mol?1) atmospheric concentrations. Twenty‐eight minirhizotron tubes were placed in each ring to sample three microsite locations: evergreen Larrea shrubs, drought‐deciduous Ambrosia shrubs, and along systematic community transects (primarily in shrub interspaces which account for ~85% of the area). Seasonal dynamics were similar for ambient and elevated CO2: fine root production peaked in April–June, with peak standing crop occurring about 1 month later, and peak mortality occurring during the hot summer months, with higher values for all three measures in a wet year compared with a dry year. Fine root standing crop, production, and mortality were not significantly different between treatments except standing crop along community transects, where fine root length was significantly lower in elevated CO2. Fine root turnover (annual cumulative mortality/mean standing crop) ranged from 2.33 to 3.17 year?1, and was not significantly different among CO2 treatments, except for community transect tubes where it was significantly lower for elevated CO2. There were no differences in fine root responses to CO2 between evergreen (Larrea) and drought‐deciduous (Ambrosia) shrubs. Combined with observations of increased leaf‐level water‐use efficiency and lack of soil moisture differences, these results suggest that under elevated CO2 conditions, reduced root systems (compared with ambient CO2) appear sufficient to provide resources for modest aboveground production increases across the community, but in more fertile shrub microsites, fine root systems of comparable size with those in ambient CO2 were required to support the greater aboveground production increases. For community transects, development of the difference in fine root standing crops occurred primarily through lower stimulation of fine root production in the elevated CO2 treatment during periods of high water availability.  相似文献   

9.
This study examined root production and turnover in a California grassland during the third year of a long‐term experiment with ambient (LO) and twice‐ambient atmospheric CO2 (HI), using harvests, ingrowth cores, and minirhizotrons. Based on one‐time harvest data, root biomass was 32% greater in the HI treatment, comparable to the stimulation of aboveground production during the study year. However, the 30–70% increase in photosynthesis under elevated CO2 for the dominant species in our system is considerably larger than the combined increase in above and belowground biomass. One possible explanation is, increased root turnover, which could be a sink for the additional fixed carbon. Cumulative root production in ingrowth cores from both treatments harvested at four dates was 2–3 times that in the single harvested cores, suggesting substantial root turnover within the growing season. Minirhizotron data confirmed this result, demonstrating that production and mortality occurred simultaneously through much of the season. As a result, cumulative root production was 54%, 47% and 44% greater than peak standing root length for the no chamber (X), LO, and HI plots, respectively. Elevated CO2, however, had little effect on rates of turnover (i.e. rates of turnover were equal in the LO and HI plots throughout most of the year) and cumulative root production was unaffected by treatment. Elevated CO2 increased monthly production of new root length (59%) only at the end of the season (April–June) when root growth had largely ceased in the LO plots but continued in the HI plots. This end‐of‐season increase in production coincided with an 18% greater soil moisture content in the HI plots previously described. Total standing root length was not affected by CO2 treatment. Root mortality was unaffected by elevated CO2 in all months except April, in which plants grown in the HI plots had higher mortality rates. Together, these results demonstrate that root turnover is considerable in the grassland community and easily missed by destructive soil coring. However, increased fine root turnover under elevated CO2 is apparently not a major sink for extra photosynthate in this system.  相似文献   

10.
Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free‐air‐CO2‐enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18‐year‐old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2‐enrichment on fine root proliferation tended to shift from shallow (0–15 cm) to deeper soil depths (15–30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2‐enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m?2 yr?1 in CO2‐enriched plots and 130 g dw m?2 yr?1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m?2 yr?1 in CO2‐enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2‐enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south‐eastern pine forests.  相似文献   

11.
Environmental control of fine root dynamics in a northern hardwood forest   总被引:3,自引:0,他引:3  
Understanding how exogenous and endogenous factors control the distribution, production and mortality of fine roots is fundamental to assessing the implications of global change, yet our knowledge of control over fine root dynamics remains rudimentary. To improve understanding of these processes, the present study developed regression relationships between environmental variables and fine root dynamics within a northern hardwood forest in New Hampshire, USA, which was experimentally manipulated with a snow removal treatment. Fine roots (< 1 mm diameter) were observed using minirhizotrons for 2 years in sugar maple and yellow birch stands and analyzed in relation to temperature, water and nutrient availability. Fine root dynamics at this site fluctuated seasonally, with growth and mortality peaking during warmer months. Monthly fine root production was strongly associated with mean monthly air temperature and neither soil moisture nor nutrient availability added additional predictive power to this relationship. This relationship exhibited a seasonal temperature hysteresis, which was altered by snow removal treatment. These results suggest that both exogenous and endogenous cues may be important in controlling fine root growth in this system. Proportional fine root mortality was directly associated with mean monthly soil temperature, and proportional fine root mortality during the over‐winter interval was strongly related to whether the soil froze. The strong relationship between fine root production and air temperature reported herein contrasts with findings from some hardwood forest sites and indicates that controls on fine root dynamics vary geographically. Future research must more clearly distinguish between endogenous and exogenous control over fine root dynamics in various ecosystems.  相似文献   

12.
Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live (32.2 g.m-2.a-1)in the middle(10-20 cm)and deep layer (20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing soil layer.RLD and SRL in May were the highestthe other months,and RLD was the lowest in Septemberdynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability.  相似文献   

13.
Little work has been done on the phenology of root growth and senescence largely due to methodological difficulties. The application of minirhizotron technology has enabled the tracking of individual roots through an entire growing season. As a result, direct measures of mortality, root growth, and an analysis of cohorts can be obtained. This study examined the belowground response of vegetation in a nutrient limited system to nitrogen addition. Small plots on a 36 year old dune on Hog Island, a barrier island in the Virginia Coast Reserve Long Term Ecological Research Site, were fertilized with nitrogen. Minirhizotron tubes were installed in each fertilized and control plot. Each tube was sampled monthly for nine months, March through October of 1992. Root length density increased throughout the growing season with the greatest root length density in the top 20 cm of the soil profile. The fertilized plots had greater root length densities (14.1 mm cm-2) than the unfertilized plots (2.9 mm cm-2). There was no significant depth × treatment interaction. Root mortality did not significantly change with fertilization. The largest loss of roots for a cohort occurred within the first month. The dune grassland community did not respond to fertilization with large changes in root distribution or increases in mortality in this study.  相似文献   

14.

Background and aims

Increased soil temperature and nutrient availability enhance soil biological activity. We studied how these affect fine root growth and survival, i.e. below-ground litter production, in relation to above-ground foliage litter production of Norway spruce (Picea abies (L.) Karst.).

Methods

The treatments, irrigation (I), soil warming + irrigation (WI), fertilization + irrigation (FI) and soil warming + fertilization + irrigation (WFI) were started in 1987 (F, I) and in 1995 (W). The annual production of fine root litter was estimated from minirhizotrons (survival) and soil-cores (biomass) and the annual above-ground litter production from litter traps.

Results and conclusions

The number and elongation of fine roots tended to be higher in WI and I compared to the other treatments, which may indicate nutrient shortage. Fine roots in the WFI treatment had the lowest median longevity and from three to fourfold higher below-ground litter production compared to WI, FI or I - higher soil temperature increased the litter input particularly into the mineral soil. Only fertilization increased the above-ground litter production. As warmer and more nutrient-rich soil significantly shortened the fine root lifespan and increased the litter input, the storage of carbon in boreal forest soil may increase in the future.  相似文献   

15.
施肥对日本落叶松人工林细根生物量的影响   总被引:6,自引:1,他引:6  
以辽宁东部山区16年生日本落叶松人工林为研究对象,探讨施肥对落叶松细根总生物量、不同层次生物量及不同根序生物量的影响.结果表明,与对照相比,施氮肥显著降低细根总生物量(P<0.01),而施磷肥及施氮+磷肥处理的细根总生物量差异不显著(P>0.05).落叶松人工林表层土壤(0~10 cm)细根生物量明显高于亚表层(10~20 cm)(P<0.01),各处理样地表层生物量占总生物量的64%~73%.施肥对不同层次、不同级别根序细根生物量的影响不同.与对照相比,施氮肥显著地降低了表层土壤1、3、4、5级根生物量(P<0.05),施磷肥(5级根除外)、施氮+磷肥(2级根除外)表层土壤各级根序细根生物量降低均不显著(P>0.05).在亚表层土壤,施氮肥和磷肥对各级根序生物量均没有显著影响(P>0.05);施氮+磷肥显著增加了1级根生物量(P<0.05),而其余各级根序细根生物量差异不显著(P>0.05).  相似文献   

16.
Winter barley was grown in a long-term fertilizer experiment (14 years) using two P treatments: (i) no P fertilization over the whole time (–P) and (ii) an annual fertilization of 44 kg P ha–1 (+P). The objective of the study was to investigate the influence of the P supply on total root production and root mortality (i.e., root turnover) and to assess the benefit of a more rapid root turnover on P acquisition. Shoot development and grain yield was reduced in the – treatment, whereas the standing root system had nearly the same size as in the +P treatment. Gross root growth was measured using the ingrowth core method. Mesh bags filled with root-free soil were buried into the rooting zone (0–30 cm) and root growth into the bags over periods of 2–3 weeks was determined. Assuming that no root mortality occured inside the bags during this short period, root length in the bags will be a measure of total root production. Total root production between April and June exceeded the size of the standing root system by a factor of 2 to 3 and was significantly higher at P deficiency. Root mortality as the difference between total root production and the size of the standing root system was also increased at P shortage. P uptake was calculated by using a mechanistic transport and uptake model. Calculations based on gross root growth and root mortality resulted in a higher uptake than calculations based on the development of the standing root system, although the length of the active roots were the same in both calculations. This was due to a better exploitation of undepleted soil areas by the growing root system. The root renewal by a continuous root growth and root mortality is discussed as a mechanism of P uptake efficiency.  相似文献   

17.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   

18.
Minirhizotrons were used to observe fine root (Б mm) production, mortality, and longevity over 2 years in four sugar-maple-dominated northern hardwood forests located along a latitudinal temperature gradient. The sites also differed in N availability, allowing us to assess the relative influences of soil temperature and N availability in controlling fine root lifespans. Root production and mortality occurred throughout the year, with most production occurring in the early portion of the growing season (by mid-July). Mortality was distributed much more evenly throughout the year. For surface fine roots (0-10 cm deep), significant differences in root longevity existed among the sites, with median root lifespans for root cohorts produced in 1994 ranging from 405 to 540 days. Estimates of fine root turnover, based on the average of annual root production and mortality as a proportion of standing crop, ranged from 0.50 to 0.68 year-1 for roots in the upper 30 cm of soil. The patterns across sites in root longevity and turnover did not follow the north to south temperature gradient, but rather corresponded to site differences in N availability, with longer average root lifespans and lower root turnover occurring where N availability was greater. This suggests the possibility that roots are maintained as long as the benefit (nutrients) they provide outweighs the C cost of keeping them alive. Root N concentrations and respiration rates (at a given temperature) were also higher at sites where N availability was greater. It is proposed that greater metabolic activity for roots in nitrogen-rich zones leads to greater carbohydrate allocation to those roots, and that a reduction in root C sink strength when local nutrients are depleted provides a mechanism through which root lifespan is regulated in these forests.  相似文献   

19.
M.R. Bakker 《Plant and Soil》1999,206(1):109-121
Fine root distribution, quantities, dynamics and composition were studied in a sessile oak coppice stand in the French Ardennes on an acidic soil (< pH-H2O 4.5), one to five years after lime or gypsum applications. Fine root biomass and length increased and specific root length decreased after lime or gypsum treatments. The treatment responses were strongest four to five years after the applications, but the tendencies after one year were similar. The effects were pronounced in the top 15 cm but also at 30–45 cm four to five years after liming. The latter effect suggests an indirect positive feedback from the aerial parts of the trees into the deeper soil layers. Sequential sampling for two years revealed large differences in total fine root length between the years, and also indicated that fine root turnover was lower after liming or gypsum applications than in the control. This seemed to be related to a lower fine root mortality and higher longevity rather than to increased fine root production. The improved nutrient status of the fine roots corroborates this and coincides with improved foliar nutrition and tree growth. Moderate doses of lime and gypsum appeared effective in enhancing root system uptake function, resulting in increased above ground growth.  相似文献   

20.
Fine root demography in alfalfa (Medicago sativa L.)   总被引:1,自引:1,他引:0  
In perennial forages like alfalfa (Medicago sativa L.), repeated herbage removal may alter root production and mortality which, in turn, could affect deposition of fixed N in soil. Our objective was to determine the extent and patterns of fine-diameter root production and loss during the year of alfalfa stand establishment. The experiment was conducted on a loamy sand soil (Udorthentic Haploboroll) in Minnesota, USA, using horizontally installed minirhizotrons placed directly under the seeded rows at 10, 20, and 40 cm depths in four replicate blocks. We seeded four alfalfa germplasms that differed in N2 fixation capacity and root system architecture: Agate alfalfa, a winter hardy commercially-available cultivar; Ineffective Agate, which is a non-N2-fixing near isoline of Agate; a new germplasm that has few fibrous roots and strong tap-rooted traits; and a new germplasm that has many fibrous roots and a strongly branched root system architecture. Video images collected biweekly throughout the initial growing season were processed using C-MAP-ROOTS software.More than one-half of all fine roots in the upper 20 cm were produced during the first 7 weeks of growth. Root production was similar among germplasms, except that the highly fibrous, branch-rooted germplasm produced 29% more fine roots at 20 cm than other germplasms. In all germplasms, about 7% of the fine roots at each depth developed into secondarily thickened roots. By the end of the first growing season, greatest fine root mortality had occurred in the uppermost depth (48%), and least occurred at 40 cm (36%). Survival of contemporaneous root cohorts was not related to soil depth in a simple fashion, although all survivorship curves could be described using only five rates of exponential decline. There was a significant reduction in fine root mortality before the first herbage harvest, followed by a pronounced loss (average 22%) of fine roots at the 10- and 20-cm depths in the 2-week period following herbage removal. Median life spans of these early-season cohorts ranged from 58 to 131 days, based on fitted exponential equations. At all depths, fine roots produced in the 4 weeks before harvest (early- to mid-August) tended to have shorter median life spans than early-season cohorts. Similar patterns of fine root mortality did not occur at the second harvest. Germplasms differed in the pattern, but not the ultimate extent, of fine root mortality. Fine root turnover during the first year of alfalfa establishment in this experiment released an estimated 830 kg C ha–1 and 60 kg N ha–1, with no differences due to N2 fixation capacity or root system architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号