首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular Yersinia spp. disarm the immune system by injecting the effector Yersinia outer proteins (Yops) into the target cell. Yop secretion is triggered by contact with eukaryotic cells or by Ca2+ chelation. Two proteins, YopN and LcrG, are known to be involved in Yop-secretion control. Here we describe TyeA, a third protein involved in the control of Yop release. Like YopN, TyeA is localized at the bacterial surface. A tyeA knock-out mutant secreted Yops in the presence of Ca2+ and in the absence of eukaryotic cells. Unlike a yopN null mutant, the tyeA mutant was defective for translocation of YopE and YopH, but not YopM, YopO and YopP, into eukaryotic cells. This is the first observation suggesting that Yop effectors can be divided into two sets for delivery into eukaryotic cells. TyeA was found to interact with the translocator YopD and with residues 242-293 of YopN. In contrast with a yopN null mutant, a yopNDelta248-272 mutant was also unable to translocate YopE and YopH. Our results suggest that TyeA forms part of the translocation-control apparatus together with YopD and YopN, and that the interaction of these proteins is required for selective translocation of Yops inside eukaryotic cells.  相似文献   

2.
Y. enterocolitica translocates virulence proteins, called Yop effectors, into the cytosol of eukaryotic cells. Here we investigated whether Y. enterocolitica could translocate Yops into a range of eukaryotic cells including neurons and insect cells. Y. enterocolitica translocated the hybrid reporter protein YopE-Cya into each of the eukaryotic cell types tested. In addition, Y. enterocolitica was cytotoxic for each of the adherent cell types. Thus we detected no limit to the range of eukaryotic cells into which Y. enterocolitica can translocate Yops. The Yop effectors YopE, YopH and YopT were each cytotoxic for the adherent cell types tested, showing that not only is Y. enterocolitica not selective in its translocation of particular Yop effectors into each cell type, but also that the action of these Yop effectors is not cell type specific. Invasin and/or YadA, two powerful adhesins were required for translocation of Yop into non-phagocytic cells but not for translocation into macrophages. To use the Yersinia translocation system for broad applications, a Y. enterocolitica translocation strain and vector for the delivery of heterologous proteins into eukaryotic cells was constructed. This strain + vector combination lacks the translocated Yop effectors and allows delivery into eukaryotic cells of heterologous proteins fused to the minimal N-terminal secretion/translocation signal of YopE. Using this strategy translocation of a YopE-Diphtheria toxin subunit A hybrid protein into several cell types has been shown.  相似文献   

3.
Pathogenic Yersinia species employ type III machines to target effector Yops into the cytosol of eukaryotic cells. Yersinia tyeA mutants are thought to be defective in the targeting of YopE and YopH without affecting the injection of YopM, YopN, YopO, YopP, and YopT into the cytosol of eukaryotic cells. One model suggests that TyeA may form a tether between YopN (LcrE) and YopD on the bacterial surface, a structure that may translocate YopE and YopH across the plasma membrane of eukaryotic cells (M. Iriarte, M. P. Sory, A. Boland, A. P. Boyd, S. D. Mills, I. Lambermont, and G. R. Cornelis, EMBO J. 17:1907-1918, 1998). We have examined the injection of Yop proteins by tyeA mutant yersiniae with the digitonin fractionation technique. We find that tyeA mutant yersiniae not only secreted YopE, YopH, YopM, and YopN into the extracellular medium but also targeted these polypeptides into the cytosol of HeLa cells. Protease protection, cell fractionation, and affinity purification experiments suggest that TyeA is located intracellularly and binds to YopN or YopD. We propose a model whereby TyeA functions as a negative regulator of the type III targeting pathway in the cytoplasm of yersiniae, presumably by preventing the export of YopN.  相似文献   

4.
Yersinia pestis, the causative agent of plague, exports a set of virulence proteins called Yops upon contact with eukaryotic cells. A subset of these Yops is translocated directly into the cytosol of host cells. In this study, a novel protein tag-based reporter system is used to measure the translocation of Yops into cultured eukaryotic cells. The reporter system uses a small bipartite phosphorylatable peptide tag, termed the Elk tag. Translocation of an Elk-tagged protein into eukaryotic cells results in host cell protein kinase-dependent phosphorylation of the tag at a specific serine residue, which can subsequently be detected with phosphospecific antibodies. The YopN, TyeA, SycN, YscB and LcrG proteins function to prevent Yop secretion before host cell contact. The role of these proteins was investigated in the translocation of Elk-tagged YopE (YopE129-Elk) and YopN (YopN293-Elk) into HeLa cells. Y. pestis yopN, tyeA, sycN and yscB deletion mutants showed reduced levels of YopE129-Elk phosphorylation compared with the parent strain, indicating that these mutants translocate reduced amounts of YopE. We also demonstrate that YopN293-Elk is translocated into HeLa cells and that this process is more efficient in a Yersinia yop polymutant strain lacking the six translocated effector Yops. Y. pestis sycN and yscB mutants translocated reduced amounts of YopN293-Elk; however, tyeA and lcrG mutants translocated higher amounts of YopN293-Elk compared with the parent strain. These data suggest that TyeA and LcrG function to suppress the secretion of YopN before host cell contact, whereas SycN and YscB facilitate YopN secretion and subsequent translocation.  相似文献   

5.
6.
Extracellular Yersinia disarm the immune system of their host by injecting effector Yop proteins into the cytosol of target cells. Five effectors have been described: YopE, YopH, YpkA/YopO, YopP and YopM. Delivery of these effectors by Yersinia adhering at the cell surface requires other Yops (translocators) including YopB. Effector and translocator Yops are secreted by the type III Ysc secretion apparatus, and some Yops also need a specific cytosolic chaperone, called Syc. In this paper, we describe a new Yop, which we have called YopT (35.5 kDa). Its secretion required an intact Ysc apparatus and SycT (15.0 kDa, pI 4.4), a new chaperone resembling SycE. Infection of macrophages with a Yersinia , producing a hybrid YopT–adenylate cyclase, led to the accumulation of intracellular cAMP, indicating that YopT is delivered into the cytosol of eukaryotic cells. Infection of HeLa cells with a mutant strain devoid of the five known Yop effectors (ΔHOPEM strain) but producing YopT resulted in the alteration of the cell cytoskeleton and the disruption of the actin filament structure. This cytotoxic effect was caused by YopT and dependent on YopB. YopT is thus a new effector Yop and a new bacterial toxin affecting the cytoskeleton of eukaryotic cells.  相似文献   

7.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.  相似文献   

8.
The Yersinia pestis low-Ca2+ response stimulon is responsible for the environmentally regulated expression and secretion of antihost proteins (V antigen and Yops). We have previously shown that yscO encodes a secreted core component of the Yop secretion (Ysc) mechanism. In this study, we constructed and characterized in-frame deletions in the adjacent gene, yscP, in the yscN-yscU operon. The DeltaP1 mutation, which removed amino acids 246 to 333 of YscP, had no effect on Yop expression or secretion, and the mutant protein, YscP1, was secreted, as was YscP in the parent. In contrast, the DeltaP2 strain expressed and secreted less of each Yop than did the parent under the inductive conditions of 37 degrees C and the absence of Ca2+, with an exception being YopE, which was only minimally affected by the mutation. The YscP2 protein, missing amino acids 57 to 324 of YscP, was expressed but not secreted by the DeltaP2 mutant. The effect of the DeltaP2 mutation was at the level of Yop secretion because YopM and V antigen still showed limited secretion when overproduced in trans. Excess YscP also affected secretion: overexpression of YscP in the parent, in either yscP mutant, or in an lcrG mutant effectively shut off secretion. However, co-overexpression of YscO and YscP had no effect on secretion, and YscP overexpression in an lcrE mutant had little effect on Yop secretion, suggesting that YscP acts, in conjunction with YscO, at the level of secretion control of LcrE at the bacterial surface. These findings place YscP among the growing family of mobile Ysc components that both affect secretion and themselves are secreted by the Ysc.  相似文献   

9.
Pathogenic Yersiniae adhere to and kill macrophages by targeting some of their Yop proteins into the eukaryotic cytosol. There is debate about whether YopE targeting proceeds as a direct translocation of polypeptide between cells or in two distinct steps, each requiring specific signals for YopE secretion across the bacterial envelope and for translocation into the eukaryotic cytosol. Here, we used the selective solubilization of the eukaryotic plasma membrane with digitonin to measure Yop targeting during Yersinia infections of HeLa cells. YopE, YopH, YopM and YopN were found in the eukaryotic cytosol but not in the extracellular medium. When bound to SycE chaperone in the Yersinia cytoplasm, YopE residues 1–100 are necessary and sufficient for the targeting of hybrid neomycin phosphotransferase. Electron microscopic analysis failed to detect an extracellular intermediate of YopE targeting, suggesting a one-step translocation mechanism.  相似文献   

10.
Yersinia pestis expresses a set of secreted proteins called Yops and the bifunctional LcrV, which has both regulatory and antihost functions. Yops and LcrV expression and the activity of the type III mechanism for their secretion are coordinately regulated by environmental signals such as Ca2+ concentration and eukaryotic cell contact. In vitro, Yops and LcrV are secreted into the culture medium in the absence of Ca2+ as part of the low-Ca2+ response (LCR). The LCR is induced in a tissue culture model by contact with eukaryotic cells that results in Yop translocation into cells and subsequent cytotoxicity. The secretion mechanism is believed to indirectly regulate expression of lcrV and yop operons by controlling the intracellular concentration of a secreted negative regulator. LcrG, a secretion-regulatory protein, is thought to block secretion of Yops and LcrV, possibly at the inner face of the inner membrane. A recent model proposes that when the LCR is induced, the increased expression of LcrV yields an excess of LcrV relative to LcrG, and this is sufficient for LcrV to bind LcrG and unblock secretion. To test this LcrG titration model, LcrG and LcrV were expressed alone or together in a newly constructed lcrG deletion strain, a ΔlcrG2 mutant, of Y. pestis that produces low levels of LcrV and constitutively expresses and secretes Yops. Overexpression of LcrG in this mutant background was able to block secretion and depress expression of Yops in the presence of Ca2+ and to dramatically decrease Yop expression and secretion in growth medium lacking Ca2+. Overexpression of both LcrG and LcrV in the ΔlcrG2 strain restored wild-type levels of Yop expression and Ca2+ control of Yop secretion. Surprisingly, when HeLa cells were infected with the ΔlcrG2 strain, no cytotoxicity was apparent and translocation of Yops was abolished. This correlated with an altered distribution of YopB as measured by accessibility to trypsin. These effects were not due to the absence of LcrG, because they were alleviated by restoration of LcrV expression and secretion alone. LcrV itself was found to enter HeLa cells in a nonpolarized manner. These studies supported the LcrG titration model of LcrV’s regulatory effect at the level of Yop secretion and revealed a further role of LcrV in the deployment of YopB, which in turn is essential for the vectorial translocation of Yops into eukaryotic cells.  相似文献   

11.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

12.
13.
YscB of Yersinia pestis Functions as a Specific Chaperone for YopN   总被引:5,自引:0,他引:5       下载免费PDF全文
Following contact with a eucaryotic cell, Yersinia species pathogenic for humans (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) export and translocate a distinct set of virulence proteins (YopE, YopH, YopJ, YopM, and YpkA) from the bacterium into the eucaryotic cell. During in vitro growth at 37°C in the presence of calcium, Yop secretion is blocked; however, in the absence of calcium, Yop secretion is triggered. Yop secretion occurs via a plasmid-encoded type III, or “contact-dependent,” secretion system. The secreted YopN (also known as LcrE), TyeA, and LcrG proteins are necessary to prevent Yop secretion in the presence of calcium and prior to contact with a eucaryotic cell. In this paper we characterize the role of the yscB gene product in the regulation of Yop secretion in Y. pestis. A yscB deletion mutant secreted YopM and V antigen both in the presence and in the absence of calcium; however, the export of YopN was specifically reduced in this strain. Complementation with a functional copy of yscB in trans completely restored the wild-type secretion phenotype for YopM, YopN, and V antigen. The YscB amino acid sequence showed significant similarities to those of SycE and SycH, the specific Yop chaperones for YopE and YopH, respectively. Protein cross-linking and immunoprecipitation studies demonstrated a specific interaction between YscB and YopN. In-frame deletions in yopN eliminating the coding region for amino acids 51 to 85 or 6 to 100 prevented the interaction of YopN with YscB. Taken together, these results indicate that YscB functions as a specific chaperone for YopN in Y. pestis.  相似文献   

14.
Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop-Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ- triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE-, YopH- or YopJ- bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ- mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells.  相似文献   

15.
Pathogenic Yersinia species use a virulence-plasmid encoded type III secretion pathway to escape the innate immune response and to establish infections in lymphoid tissues. At least 22 secretion machinery components are required for type III transport of 14 different Yop proteins, and 10 regulatory factors are responsible for activating this pathway in response to environmental signals. Although the genes for these products are located on the 70-kb virulence plasmid of Yersinia, this extrachromosomal element does not appear to harbor genes that provide for the sensing of environmental signals, such as calcium-, glutamate-, or serum-sensing proteins. To identify such genes, we screened transposon insertion mutants of Y. enterocolitica W22703 for defects in type III secretion and identified ttsA, a chromosomal gene encoding a polytopic membrane protein. ttsA mutant yersiniae synthesize reduced amounts of Yops and display a defect in low-calcium-induced type III secretion of Yop proteins. ttsA mutants are also severely impaired in bacterial motility, a phenotype which is likely due to the reduced expression of flagellar genes. All of these defects were restored by complementation with plasmid-encoded wild-type ttsA. LcrG is a repressor of the Yersinia type III pathway that is activated by an environmental calcium signal. Mutation of the lcrG gene in a ttsA mutant strain restored the type III secretion of Yop proteins, although the double mutant strain secreted Yops in the presence and absence of calcium, similar to the case for mutants that are defective in lcrG gene function alone. To examine the role of ttsA in the establishment of infection, we measured the bacterial dose required to produce an acute lethal disease following intraperitoneal infection of mice. The ttsA insertion caused a greater-than-3-log-unit reduction in virulence compared to that of the parental strain.  相似文献   

16.
During infection of cultured epithelial cells, surface-located Yersinia pseudotuberculosis deliver Yop (Yersinia outer protein) virulence factors into the cytoplasm of the target cell. A non-polar yopB mutant strain displays a wild-type phenotype with respect to in vitro Yop regulation and secretion but fails to elicit a cytotoxic response in cultured HeLa cells and is unable to inhibit phagocytosis by macrophage-like J774 cells. Additionally, the yopB mutant strain was avirulent in the mouse model. No YopE or YopH protein were observed within HeLa cells infected with the yopB mutant strain, suggesting that the loss of virulence of the mutant strain was due to its inability to translocate Yop effector proteins through the target cell plasma membrane. Expression of YopB is necessary for Yersinia-induced lysis of sheep erythrocytes. Purified YopB was shown to have membrane disruptive activity in vitro. YopB-dependent haemolytic activity required cell contact between the bacteria and the erythrocytes and could be inhibited by high, but not low, molecular weight carbohydrates. Similarly, expression of YopE reduced haemolytic activity. Therefore, we propose that YopB is essential for the formation of a pore in the target cell membrane that is required for the cell-to-cell transfer of Yop effector proteins.  相似文献   

17.
Introduction of anti-host factors into eukaryotic cells by extracellular bacteria is a strategy evolved by several Gram-negative pathogens. In these pathogens, the transport of virulence proteins across the bacterial membranes is governed by closely related type III secretion systems. For pathogenic Yersinia , the protein transport across the eukaryotic cell membrane occurs by a polarized mechanism requiring two secreted proteins, YopB and YopD. YopB was recently shown to induce the formation of a pore in the eukaryotic cell membrane, and through this pore, translocation of Yop effectors is believed to occur (Håkansson et al ., 1996b). We have previously shown that YopK of Yersinia pseudotuberculosis is required for the development of a systemic infection in mice. Here, we have analysed the role of YopK in the virulence process in more detail. A yopK -mutant strain was found to induce a more rapid YopE-mediated cytotoxic response in HeLa cells as well as in MDCK-1 cells compared to the wild-type strain. We found that this was the result of a cell-contact-dependent increase in translocation of YopE into HeLa cells. In contrast, overexpression of YopK resulted in impaired translocation. In addition, we found that YopK also influenced the YopB-dependent lytic effect on sheep erythrocytes as well as on HeLa cells. A yopK -mutant strain showed a higher lytic activity and the induced pore was larger compared to the corresponding wild-type strain, whereas a strain overexpressing YopK reduced the lytic activity and the apparent pore size was smaller. The secreted YopK protein was found not to be translocated but, similar to YopB, localized to cell-associated bacteria during infection of HeLa cells. Based on these results, we propose a model where YopK controls the translocation of Yop effectors into eukaryotic cells.  相似文献   

18.
Virulent bacteria of the genera Yersinia, Shigella and Salmonella secrete a number of virulence determinants, Yops, Ipas and Sips respectively, by a type III secretion pathway. The IpaB protein of Shigella flexneri was expressed in Yersinia pseudotuberculosis and found to be secreted under the same conditions required for Yop secretion. Likewise, YopE was secreted by the wild-type strain LT2 of Salmonella typhimurium, but YopE was not secreted by the isogenic invA mutant. Secretion of both IpaB and YopE required their respective chaperones, IpgC and YerA. In addition, yopE-containing S. typhimurium expressed a YopE-mediated cytotoxicity on cultured HeLa cells. YopE was detected in the cytosol of the infected HeLa cells and the amount of translocated YopE correlated with the degree of cytotoxicity. Both translocation and cytotoxicity were prevented by the addition of gentamicin. Treatment of HeLa cells with cytochalasin D prior to infection prevented internalization of bacteria, but translocation of YopE was still observed. These results favour the hypothesis that YopE is translocated through the plasma membrane by surface-located bacteria. We propose that virulent Salmonella and Shigella deliver virulence effector molecules into the target cell through the utilization of a functionally conserved secretion/translocation machinery similar to that shown for Yersinia.  相似文献   

19.
20.
Human pathogenic Yersinia resist host defences, in part through the expression and delivery of a set of plasmid-encoded virulence proteins termed Yops. A number of these Yops are exported from the bacteria directly into the cytoplasm of their eukaryotic host's cells upon contact with these cells. The secreted YopN protein (also known as LcrE) is required to block Yop secretion in the presence of calcium in vitro or before contact with a eukaryotic cell in vivo. In this study, we characterize the role of the tyeA, sycN and yscB gene products in the regulation of Yop secretion in Yersinia pestis. Mutants specifically defective in the expression of TyeA, SycN or YscB were no longer able to block Yop secretion in the presence of calcium. In addition, the secretion of YopN was specifically reduced in both the sycN and the yscB deletion mutants. Protein cross-linking and immunoprecipitation studies in conjunction with yeast two-hybrid analyses showed that SycN and YscB interact with one another to form a SycN/YscB complex. Yeast three-hybrid analyses demonstrated that the SycN/YscB complex, but not SycN or YscB alone, specifically associates with YopN. SycN and YscB share amino acid sequence similarity and structural similarities with the specific Yop chaperones SycE and SycH. Together, these results indicate that a complex composed of SycN and YscB functions as a specific chaperone for YopN in Y. pestis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号