首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of transferrin saturation on internal iron exchange   总被引:1,自引:0,他引:1  
Radioiron was introduced into the intestinal lumen to evaluate absorption, injected as nonviable red cells to evaluate reticuloendothelial (RE) processing of iron, and injected as hemoglobin to evaluate hepatocyte iron processing. Redistribution of iron through the plasma was evaluated in control animals and animals whose transferrin was saturated by iron infusion. Radioiron introduced into the lumen of the gut as ferrous sulfate and as transferrin-bound iron was absorbed about half as well in iron-infused animals, and absorbed iron was localized in the liver. The similar absorption of transferrin-bound iron suggested that absorption of ferrous iron occurred via the mucosal cell and did not enter by diffusion. The decrease in absorption was associated with an increase in mucosal iron and ferritin content produced by the iron infusion. An inverse relationship (r = -0.895) was shown between mucosal ferritin iron and absorption. When iron was injected as nonviable red cells, it was deposited predominantly in reticuloendothelial cells of the spleen. Return of this radioiron to the plasma was only 6% of that in control animals. While there was some movement of iron from spleen to liver, this could be accounted for by intravascular hemolysis. Injected hemoglobin tagged with radioiron was for the most part taken up and held by the liver. Some 13% initially localized in the marrow in iron-infused animals was shown to be storage iron unavailable for hemoglobin synthesis. These studies demonstrate the hepatic trapping of absorbed iron and the inability of either RE cell or hepatocyte to release iron in the transferrin-saturated animal.  相似文献   

2.
An established and validated method using loops of intestine in vivo in rats was used to study the effects of cytoskeletal inhibitors on iron absorption. Radioactive iron instilled into the loop of intestine pretreated with test substance was monitored in the blood and, after death, ferritin loading with radioactive iron was measured on density gradients of mucosal cell homogenates and absorbed iron in the carcass was determined. Colchicine, vincristine and cytochalasin B all caused dose- and time-dependent inhibition of iron absorption, and the effects of cytochalasin B were reversible within 1 h. It is not known which cellular component is the vehicle for the transcellular movement of iron from the intestinal lumen onto plasma transferrin; however, this study showed that the uptake of iron by ferritin in an iron-absorbing loop of intestine paralleled the actual absorption of iron into the carcass. This phenomenon did not occur in non-iron-absorbing intestinal and was inhibited by the action of the cytoskeletal inhibitors in the iron-absorbing region. Previously we had shown that iron uptake into cells and onto cellular transferrin was virtually the same throughout the small intestine, irrespective of the iron-absorbing capacity of the region. The results of this study therefore suggest that iron absorption depends on an intact cytoskeletal system and that ferritin in the iron-absorbing cell is able to load from the pool of iron committed to transcellular movement onto plasma transferrin.  相似文献   

3.
Total plasma iron turnover in man is about 36 mg/day. Transferrin is the iron transport protein of plasma, which can bind 2 atoms of iron per protein molecule, and which interacts with various cell types to provide them with the iron required for their metabolic and proliferative processes. All tissues contain transferrin receptors on their plasma membrane surfaces, which interact preferentially with diferric transferrin. In erythroid cells as well as certain laboratory cell lines, the removal of iron from transferrin apparently proceeds via the receptor-mediated endocytosis process. Transferrin and its receptor are recycled to the cell surface, whereas the iron remains in the cell. The mode of iron uptake in the hepatocyte, the main iron storage tissue, is less certain. The release of iron by hepatocytes, as well as by the reticuloendothelial cells, apparently proceeds nonspecifically. All tissues contain the iron storage protein ferritin, which stores iron in the ferric state, though iron must be in the ferrous state to enter and exit the ferritin molecule. Cellular cytosol also contains a small-molecular-weight ferrous iron pool, which may interact with protoporphyrin to form heme, and which apparently is the form of iron exported by hepatocytes and macrophages. In plasma, the ferrous iron is converted into the ferric form via the action of ceruloplasmin.  相似文献   

4.
H A Huebers  E Csiba  B Josephson  C A Finch 《Blut》1990,60(6):345-351
Iron absorption in the iron-deficient rat was compared with that in the normal rat to better understand the regulation of this dynamic process. It was found that: Iron uptake by the iron-deficient intestinal mucosa was prolonged as a result of slower gastric release, particularly when larger doses of iron were employed. The increased mucosal uptake of ionized iron was not the result of increased adsorption, but instead appeared related to a metabolically active uptake process, whereas the increased mucosal uptake of transferrin iron was associated with increased numbers of mucosal cell membrane transferrin receptors. Mucosal ferritin acted as an iron storage protein, but its iron uptake did not explain the lower iron absorption in the normal rat. Iron loading the mucosal cell (by presenting a large iron dose to the intestinal lumen) decreased absorption for 3 to 4 days. Iron loading of the mucosal cell from circulating plasma transferrin was proportionate to the plasma iron concentration. Mucosal iron content was the composite of iron loading from the lumen and loading from plasma transferrin versus release of iron into the body. These studies imply that an enhanced uptake-throughout mechanism causes the increased iron absorption in the iron-deficient rat. Results were consistent with the existence of a regulating mechanism for iron absorption that responds to change in mucosal cell iron, which is best reflected by mucosal ferritin.  相似文献   

5.
Mammalian cells regulate iron levels tightly through the activity of iron-regulatory proteins (IRPs) that bind to RNA motifs called iron-responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Likewise, intestinal epithelial cells regulate iron absorption by a process that also depends on the intracellular levels of iron. Although intestinal epithelial cells have an active IRE/IRP system, it has not been proven that this system is involved in the regulation of iron absorption in these cells. In this study, we characterized the effect of overexpression of the ferritin IRE on iron absorption by Caco-2 cells, a model of intestinal epithelial cells. Cells overexpressing ferritin IRE had increased levels of ferritin, whereas the levels of the transferrin receptor were decreased. Iron absorption in IRE-transfected cells was deregulated: iron uptake from the apical medium was increased, but the capacity to retain this newly incorporated iron diminished. Cells overexpressing IRE were not able to control iron absorption as a function of intracellular iron, because both iron-deficient cells as well as iron-loaded cells absorbed similarly high levels of iron. The labile iron pool of IRE-transfected cell was extremely low. Likewise, the reduction of the labile iron pool in control cells resulted in cells having increased iron absorption. These results indicate that cells overexpressing IRE do not regulate iron absorption, an effect associated with decreased levels of the regulatory iron pool.  相似文献   

6.
Release of iron from enterocytes and hepatocytes is thought to require the copper-dependent ferroxidase activity of hephaestin (Hp) and ceruloplasmin (Cp), respectively. In swine, copper deficiency (CD) impairs iron absorption, but whether this occurs in rats is unclear. By feeding a diet deficient in copper, CD was produced, as evidenced by the loss of copper-dependent plasma ferroxidase I activity, and in enterocytes, CD reduced copper levels and copper-dependent oxidase activity. Hematocrit was reduced, and liver iron was doubled. CD reduced duodenal mucosal iron and ferritin, whereas CD increased iron absorption. Duodenal mucosal DMT1-IRE and ferroportin1 expression remained constant with CD. When absorption in CD rats was compared with that seen normally and in iron-deficient anemic animals, strong correlations were found among mucosal iron, ferritin, and iron absorption, suggesting that the level of iron absorption was appropriate given that the erythroid and stores stimulators of iron absorption are opposed in CD. Because CD reduced the activity of Cp, as evidenced by copper-dependent plasma ferroxidase I activity and hepatocyte iron accumulation, but iron absorption increased, it is unlikely that the ferroxidase activity of Hp is important and suggests another function for this protein in the export of iron from the enterocyte during iron absorption. Also, the copper-dependent ferroxidase activity of Cp does not appear important for iron efflux from macrophages, because Kupffer cells of the liver and nonheme iron levels of the spleen were normal during copper deficiency, suggesting another role for Cp in these cells.  相似文献   

7.
Iron and zinc deficiencies likely coexist in general population. We have previously demonstrated that zinc treatment induces while zinc deficiency inhibits iron absorption in intestinal cell culture models, but this needs to be tested in vivo. In the present study we assessed intestinal iron absorption, iron status (haemoglobin), red blood cell number, plasma ferritin, transferrin receptor, hepcidin) and tissue iron levels in zinc depleted, replete and pair fed control rats. Zinc depletion led to reduction in body weight, tissue zinc levels, intestinal iron absorption, protein and mRNA expression of iron transporters, the divalent metal ion transporter-1, hephaestin and ferroportin, but elevated the intestinal and liver tissue iron levels compared with the pair fed control rats. Zinc repletion led to a significant weight gain compared to zinc deficient rats and normalized the iron absorption, iron transporter expression, tissue iron levels to that of pair fed control rats. Surprisingly, haemoglobin levels and red blood cell number reduced significantly in zinc repleted rats, which could be due to rapid weight gain. Together, these results indicate that whole body zinc status has profound influence on growth, intestinal absorption and systemic utilization of iron, mediated via modulation of iron transporter expression.  相似文献   

8.
Three days hypoxia (0.5 atm) increased the haemoglobin and haematocrit values in rats paralleled by enhanced intestinal iron absorption. The destination of recently-absorbed iron was primarily the erythropoietic system, viz. bone marrow, spleen and red cells. Total plasma transferrin, was increased by 30%, but no significant changes in mucosal transferrin were found. No increase in labelling of mucosal transferrin by absorbed iron was observed. These results suggest that mucosal transferrin does not play a major role in the regulation of intestinal iron absorption in hypoxia.  相似文献   

9.
Intestinal iron absorption is a critical process for maintaining body iron levels within the optimal physiological range. Iron in the diet is found in a wide variety of forms, but the absorption of non-heme iron is best understood. Most of this iron is moved across the enterocyte brush border membrane by the iron transporter divalent metal-ion transporter 1, a process enhanced by the prior reduction of the iron by duodenal cytochrome B and possibly other reductases. Enterocyte iron is exported to the blood via ferroportin 1 on the basolateral membrane. This transporter acts in partnership with the ferroxidase hephaestin that oxidizes exported ferrous iron to facilitate its binding to plasma transferrin. Iron absorption is controlled by a complex network of systemic and local influences. The liver-derived peptide hepcidin binds to ferroportin, leading to its internalization and a reduction in absorption. Hepcidin expression in turn responds to body iron demands and the BMP-SMAD signaling pathway plays a key role in this process. The levels of iron and oxygen in the enterocyte also exert important influences on iron absorption. Disturbances in the regulation of iron absorption are responsible for both iron loading and iron deficiency disorders in humans.  相似文献   

10.
Iron deficiency is the most common human nutritional disorder in the world. Iron absorptive capacity of the small intestine is known to be much limited and therefore large quantities of iron salts must be used to treat iron deficiency. As a result, significant amounts of iron may reach the large intestine. This study compared the capacities of the small and large intestine to transfer luminal iron to the venous blood in relationship with the expression in epithelial cells of proteins involved in iron absorption using a pig model. Intracaecal injection of iron sulphate corresponding with 2.5 and 5.0 mg elemental iron per kg body mass resulted in modest, transient, but significant (p<0.05) increases in iron concentration in the portal blood plasma. By comparing portal blood plasma iron concentrations following injection in the duodenal and caecal lumen, we calculated that 5 h after injection, iron colonic absorption represented approximately 14% of duodenal absorption. Caecal and proximal colon mucosa accumulated iron to a much lower extent than the duodenal mucosa. Isolated colonocytes were found to express divalent metal transporter (DMT1) and ferritin, but to a lesser extent than the duodenal enterocytes. Ferroportin was highly expressed in colonocytes. In these cells as well as in enterocytes ferroportin was found to be glycosylated. In short term experiments and at a concentration in the range of that measured in the aqueous phases recovered from the large intestine luminal content after iron injection, iron sulphate did not alter colonocyte viability. We concluded that the colonic epithelial cells that express proteins involved in iron absorption are able to transfer luminal iron to the venous blood even if its relative participation in the overall intestinal absorption appears to be modest under our experimental conditions.  相似文献   

11.
A S Dusso  R C Puche 《Blut》1985,51(2):103-108
Chronic administration of hypercalcemic doses of 1 alpha, 25-dihydroxycholecalciferol to intact, vitamin-D repleted rats for 4 weeks, enhanced net intestinal absorption of iron and liver iron stores. Daily net iron and calcium absorptions were found to be significantly correlated in both control and treated rats. In duodenal loop experiments, pretreatment with 1 alpha, 25-dihydroxycholecalciferol reversed the adverse effect of high Ca/Fe ratio on iron absorption. The increased intestinal absorption of iron did not result in a change of serum iron levels nor of total iron binding capacity due to the enhanced incorporation of absorbed iron into liver ferritin. The curve of uptake of 59Fe into circulating red cells of treated rats suggested retarded release of the isotope from stores. The hypothesis is advanced that the systemic metabolic defect (tissue hypoxia, raised erythropoietin levels) produced by 1 alpha, 25-dihydroxycholecalciferol is responsible for the disruption of the physiological coordination between iron stores and intestinal absorption.  相似文献   

12.
Iron is a fundamental element for humans as it represents an essential component of many proteins and enzymes. However, this element can also be toxic when present in excess because of its ability to generate reactive oxygen species. This dual nature imposes a tight regulation of iron concentration in the body. In humans, systemic iron homeostasis is mainly regulated at the level of intestinal absorption and, until now, no regulated pathways for the excretion of iron have been found. The regulation and maintenance of systemic iron homeostasis is critical to human health. Excessive iron absorption leads to iron-overload in parenchyma, while low iron absorption leads to plasma iron deficiency, which manifests as hypoferremia (iron deficiency, ID) and ID anaemia (IDA). ID and IDA are still a major health problem in pregnant women. To cure ID and IDA, iron supplements are routinely prescribed. The preferred treatment of ID/IDA, consisting in oral administration of iron as ferrous sulphate, often fails to exert significant effects on hypoferremia and may also cause adverse effects. Lactoferrin (Lf), an iron-binding glycoprotein abundantly found in exocrine secretions of mammals, is emerging as an important regulator of systemic iron homeostasis. Recent data suggest that this natural compound, capable of interacting with the most important components of iron homeostasis, may represent a valuable alternative to iron supplements in the prevention and cure of pregnancy-associated ID and IDA. In this review, recent advances in the molecular circuits involved in the complex cellular and systemic iron homeostasis will be summarised. The role of Lf in curing ID and IDA in pregnancy and in the maintenance of iron homeostasis will also be discussed. Understanding these mechanisms will provide the rationale for the development of novel therapeutic alternatives to ferrous sulphate oral administration in the prevention and cure of ID and IDA.  相似文献   

13.
Summary (1) Attempts to determine the redox-state of the absorbed iron, which appeared in the portal blood when the free iron-binding capacity was previously saturated, indicate that about 30–90% of this iron was in the ferrous state. This effect was particularly prominent after luminal administration of ferrous iron, but was also seen when iron was given in the ferric state. (2) Total iron absorption is significantly higher in ceruloplasmin-substituted copper-deficient animals as compared to copper-deficient controls. (3) The appearance rate of absorbed iron in the portal blood of copper-deficient animals increased several times immediately after the intravenous infusion of ceruloplasmin. (5) The distribution of absorbed iron was changed due to the ceruloplasmin substitution: it was increased in the reticulocytes (+66%), plasma (+400%) and the body (+ 112%), whereas in the liver it was decreased by about 78%. (5) In iron-deficient rats intravenously injected ceruloplasmin did not increase iron absorption. (6) The conclusion was drawn that, as for the entrance into the mucosa from the luminal side, also for the release at the contraluminal side into the portal blood, the ferrous state of iron is favoured and that ceruloplasmin accelerates the release into the portal blood by catalyzing the oxidation of ferrous iron due to its high Fe(II):oxygen oxidoreductase (EC 1.16.3.1) activity.  相似文献   

14.
In iron deficiency anaemia basic red cell content of ferritin is appreciably reduced. This variable was determined in 62 patients with rheumatoid arthritis to evaluate conventional laboratory indices for iron deficiency in the anaemia of rheumatoid arthritis. For 23 patients with rheumatoid arthritis and normocytic anaemia irrespective of plasma ferritin concentration, red cell ferritin content did not differ significantly from that for non-anaemic patients with rheumatoid arthritis. For 27 patients with rheumatoid arthritis and microcytic anaemia, the mean red cell ferritin content for patients with a plasma ferritin concentration in the 13-110 micrograms/l range was appreciably reduced. It was indistinguishable from that for patients with rheumatoid arthritis and classical iron deficiency anaemia, indicated by plasma ferritin concentrations of less than 12 micrograms/l. In contrast, the mean red cell ferritin content for patients with rheumatoid arthritis, microcytic anaemia, and plasma ferritin concentrations above 110 micrograms/l did not differ from that for patients with rheumatoid arthritis and normocytic anaemia. Oral treatment with iron in patients with rheumatoid arthritis, microcytic anaemia, and appreciably reduced red cell ferritin concentrations was accompanied by significant increases in haemoglobin concentration (p less than 0.01), mean corpuscular volume (p less than 0.01), and red cell ferritin contents (p less than 0.05). This treatment, however, did not produce any appreciable change in haemoglobin concentration in patients with rheumatoid arthritis, normocytic anaemia, and normal red cell ferritin contents. These findings suggest that the indices for iron deficiency in patients with rheumatoid arthritis and anaemia should include peripheral blood microcytosis together with a plasma ferritin concentration of less than 110 micrograms/l.  相似文献   

15.
Cells tightly regulate iron levels through the activity of iron regulatory proteins (IRPs) that bind to RNA motifs called iron responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Similarly, body iron homeostasis is maintained through the control of intestinal iron absorption. Intestinal epithelia cells sense body iron through the basolateral endocytosis of plasma transferrin. Transferrin endocytosis results in enterocytes whose iron content will depend on the iron saturation of plasma transferrin. Cell iron levels, in turn, inversely correlate with intestinal iron absorption. In this study, we examined the relationship between the regulation of intestinal iron absorption and the regulation of intracellular iron levels by Caco-2 cells. We asserted that IRP activity closely correlates with apical iron uptake and transepithelial iron transport. Moreover, overexpression of IRE resulted in a very low labile or reactive iron pool and increased apical to basolateral iron flux. These results show that iron absorption is primarily regulated by the size of the labile iron pool, which in turn is regulated by the IRE/IRP system.  相似文献   

16.
Short-term alterations in the amount of iron in the diets of rats caused substantial differences in the distribution of a test dose of radioiron between mucosal transferrin and mucosal ferritin, and also caused a change in the relative amounts of these two proteins in mucosal tissue without resulting in any detectable change in liver iron stores. These differences correlated with changes in the retention of radioiron by the intestinal mucosa and the transport of radioiron to the blood stream. These studies emphasize the importance of local changes in the intestinal mucosa in the regulation of dietary iron absorption.  相似文献   

17.
A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+) through ferroportin (FPN), the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp), oxidizes ferrous to ferric ion. Apo-transferrin (Tf), the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can correctly predict cellular iron efflux and is essential for physiologically relevant whole-body model of iron metabolism.  相似文献   

18.
With a view to identifying ligands that could be used as promoters of iron absorption, the affinity of a number of iron chelating agents and the efficiency with which they can donate iron to the brush border receptors has been studied. A number of organic and inorganic compounds were found to chelate iron and keep it soluble at pH 7.5 of the intestinal lumen. This ligand-bound iron was taken up by the intestinal brush border receptors with varying degree of efficiency; ascorbic acid being the most effective and EDTA and citrate the least effective in donating the chelated iron to the receptors. Several polyphosphate compounds, used as food additives, chelated iron and kept it in solution but showed moderate potency for donating iron to the receptors.  相似文献   

19.
Two iron transporters, divalent metal transporter1 (DMT1) and ferroportin1 (FPN1) have been identified; however, their role during infancy is unknown. We investigated DMT1, FPN1, ferritin, and transferrin receptor expression, iron absorption and tissue iron in iron-deficient rat pups, iron-deficient rat pups given iron supplements, and controls during early (day 10) and late infancy (day 20). With iron deficiency, DMT1 was unchanged and FPN1 was decreased (-80%) at day 10. Body iron uptake, mucosal iron retention, and total iron absorption were unchanged. At day 20, DMT1 increased fourfold and FPN1 increased eightfold in the low-Fe group compared with controls. Body iron uptake and total iron absorption were increased, and mucosal iron retention was decreased with iron deficiency. Iron supplementation normalized expression levels of the transporters, body iron uptake, mucosal iron retention, and total iron absorption of the low-Fe group to those of controls at day 20. In summary, the molecular mechanisms regulating iron absorption during early infancy differ from late infancy when they are similar to adult animals, indicating developmental regulation of iron absorption.  相似文献   

20.
The objectives of this study were to compare iron availability from commercial preparations of FeSO(4), ferrous gluconate, ferrous fumarate, and a polysaccharide-iron complex using an in vitro digestion/Caco-2 cell culture model. In addition, we sought to determine if calcium carbonate and calcium acetate (common phosphate binding agents) inhibited iron availability from an oral iron supplement when digested simultaneously. Caco-2 cell ferritin formation following exposure to simulated gastric and intestinal digests of the iron supplements was used as a measure of iron uptake and availability. Plates without cell monolayers were included in each replication of the experiment to measure the total amount of soluble iron that resulted from the in vitro digestion. Significantly more iron was taken up from the FeSO(4), ferrous gluconate, and ferrous fumarate than the polysaccharide-iron complex. Similar results comparing FeSO(4) and the polysaccharide-iron complex have been observed in humans. In addition, less iron was taken up from digests with calcium carbonate relative to calcium acetate even though similar amounts of soluble iron were observed in these experiments. The results indicate that when iron supplements and phosphate binders are consumed simultaneously, calcium acetate may be the preferred phosphate binder to maximize iron availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号