共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonspecific esterase activity expressed in Weibel-Palade bodies of cloned guinea pig aortic endothelial cells 总被引:1,自引:0,他引:1
R A Monahan-Earley T Isomura R I Garcia S J Galli H F Dvorak A M Dvorak 《The journal of histochemistry and cytochemistry》1987,35(5):531-539
We studied the localization of nonspecific esterase activities in cloned guinea pig aortic endothelial cells using ultrastructural cytochemistry. Weibel-Palade bodies (WPB), which are known to contain von Willebrand protein, were positive for esterase, defining a heretofore unrecognized activity of these organelles. Esterase activity was also found localized to the external surface of the plasma membrane, to cytoplasmic lipid bodies, and to the outer (cytoplasm-facing) surface of certain membrane-bound cytoplasmic vacuoles. Localization of esterase activity to these four discrete sites probably reflects the presence of a number of endothelial cell enzymes capable of hydrolyzing alpha-naphthyl acetate or butyrate. The physiological substrate and biological function of these enzyme activities are not presently understood. 相似文献
2.
Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells 总被引:61,自引:6,他引:61 下载免费PDF全文
Immunofluorescence staining of cultured human umbilical vein endothelial cells has shown the presence of von Willebrand protein in the perinuclear region, in small rodlike structures through the cytoplasm, and on filaments of the extracellular matrix. Nonendothelial cells showed no staining with anti-von Willebrand protein antiserum. At the light microscope level, immunoperoxidase treatment of endothelial cells revealed the same pattern and antibody specificity as the fluorescence staining. Thin sections of the peroxidase-stained cells showed decorated filaments close to the substratum and also specific deposits in the endoplasmic reticulum and Weibel-Palade bodies. Control antisera against other selected proteins in endothelial cells failed to stain the Weibel-Palade bodies. These data suggest that the Weibel- Palade bodies of endothelial cells are storage and/or processing organelles for von Willebrand protein. 相似文献
3.
Into T Kanno Y Dohkan J Nakashima M Inomata M Shibata K Lowenstein CJ Matsushita K 《The Journal of biological chemistry》2007,282(11):8134-8141
The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cgamma. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cgamma-dependent activation of the NF-kappaB pathway. Increased TLR2 expression by transfection or interferon-gamma treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation. 相似文献
4.
Fan Y Wu DZ Gong YQ Xu R Hu ZB 《Biochemical and biophysical research communications》2002,293(3):979-985
Metabolic responses induced by thrombin in human umbilical vein endothelial cells (HUVECs) were investigated by using the cytosensor technique. Thrombin increased the extracellular acidification rate of endothelial cells, measured as an index of metabolic activity with a cytosensor microphysiometer, in a concentration-dependent fashion with an EC(50) of 1.27+/-0.59 IU/ml, which was abolished by the MAP kinase inhibitor PD98059. When intracellular Ca(2+) was chelated or PKC was inactivated, PD98059 failed to abolish the thrombin-induced acidification rate response in HUVECs. In addition, the tyrosine kinase inhibitor genistein, PKC inhibitor calphostin C, and Na(+)/H(+)exchanger antagonist MIA also partly inhibited thrombin-induced acidification rate responses. It is suggested that thrombin stimulated rapid metabolic responses via MAP kinase in HUVECs, which are calcium- and PKC-dependent. 相似文献
5.
Lüttge M Fulde M Talay SR Nerlich A Rohde M Preissner KT Hammerschmidt S Steinert M Mitchell TJ Chhatwal GS Bergmann S 《Cellular microbiology》2012,14(2):210-225
Invasive pneumococcal infections due to Streptococcus pneumoniae lead to inflammatory infiltration of leucocytes into lung alveolus, meninges and to septic dissemination within the vascular system. The lung microvasculature is covered by pulmonary endothelial cells containing Weibel‐Palade bodies (WPB) releasing procoagulant von Willebrand factor (vWF) and other proteins in response to inflammatory stimuli. The influence of pathogenic pneumococci on secretion of WPB proteins is unknown. Here, we report that adherence of S. pneumoniae to primary human pulmonary microvascular endothelial cells (HPMEC) stimulates the WPB exocytosis and the secretion of vWF and interleukin 8 (IL‐8). Moreover, infection analyses performed with pneumococcal mutants deficient in the expression of cytotoxic pneumolysin demonstrated that, in addition to direct bacterial adherence, sublytic concentrations of pneumolysin stimulated vWF secretion. The release of vWF was induced after infection with pneumococci from both the apical and the basal cell surfaces, which implies a stimulation of WPB exocytosis in both directions: from inside the vasculature and also following invasive pneumococcal transmigration from pulmonary tissue into the bloodstream. In conclusion, this study demonstrates that the most relevant pulmonary pathogen S. pneumoniae induces release of proinflammatory and procoagulative components directly contributing to pathophysiological processes leading to fatal tissue injury during course of infection. 相似文献
6.
Macrophage migration inhibitory factor is induced by thrombin and factor Xa in endothelial cells 总被引:4,自引:0,他引:4
Shimizu T Nishihira J Watanabe H Abe R Honda A Ishibashi T Shimizu H 《The Journal of biological chemistry》2004,279(14):13729-13737
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, has been shown to play a role in wound-healing processes. In this study, we investigated whether protease-activated receptor (PAR)-1 and PAR-2 mediated MIF expression in human endothelial cells. Thrombin, factor Xa (FXa), and trypsin induced MIF expression in human dermal microvascular endothelial cells and human umbilical vein endothelial cells, but other proteases, including kallikrein and urokinase, failed to do so. Thrombin-induced MIF mRNA expression was significantly reduced by the thrombin-specific inhibitor hirudin. Thrombin receptor activation peptide-6, a synthetic PAR-1 peptide, induced MIF mRNA expression, suggesting that PAR-1 mediates MIF expression in response to thrombin. The effects of FXa were blocked by antithrombin III, but not by hirudin, indicating that FXa might enhance MIF production directly rather than via thrombin stimulation. The synthetic PAR-2 peptide SLIGRL-NH(2) induced MIF mRNA expression, showing that PAR-2 mediated MIF expression in response to FXa. Concerning the signal transduction, a mitogen-activated protein kinase kinase inhibitor (PD98089) and a nuclear factor (NF)-kappaB inhibitor (SN50) suppressed the up-regulation of MIF mRNA in response to thrombin, FXa, and PAR-2 agonist stimulation, whereas a p38 inhibitor (SB203580) had little effect. These facts indicate that up-regulation of MIF by thrombin or FXa is regulated by p44/p42 mitogen-activated protein kinase-dependent pathways and NF-kappaB-dependent pathways. Moreover, we found that PAR-1 and PAR-2 mRNA expression in endothelial cells was enhanced by MIF. Furthermore, we examined the inflammatory response induced by PAR-1 and PAR-2 agonists injected into the mouse footpad. As shown by footpad thickness, an indicator of inflammation, MIF-deficient mice (C57BL/6) were much less sensitive to either PAR-1 or PAR-2 agonists than wild-type mice. Taken together, these results suggest that MIF contributes to the inflammatory phase of the wound healing process in concert with thrombin and FXa via PAR-1 and PAR-2. 相似文献
7.
Kohlhaas CF Morrow VA Jhakra N Patil V Connell JM Petrie JR Salt IP 《Biochemical and biophysical research communications》2011,412(4):747-751
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca(2+)-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, L-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated L-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3'-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular L-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the L-arginine transport inhibitor, L-lysine. Basal L-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated L-arginine transport remained unaltered. The increase in L-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions. 相似文献
8.
Zannettino AC Holding CA Diamond P Atkins GJ Kostakis P Farrugia A Gamble J To LB Findlay DM Haynes DR 《Journal of cellular physiology》2005,204(2):714-723
Recent studies demonstrate roles for osteoprotegerin (OPG) in both skeletal and extra-skeletal tissues. Although its role in preventing osteoclast (OC) formation and activity is well documented, emerging evidence suggests a role of OPG in endothelial cell survival and the prevention of arterial calcification. In this communication, we show that vascular endothelial cells in situ, and human umbilical vein endothelial cells (HUVEC) in vitro, express abundant OPG. In HUVEC, OPG co-localizes with P-selectin and von Willebrand factor (vWF), within the Weibel-Palade bodies (WPB). Treatment of HUVEC with the pro-inflammatory cytokines, tumor necrosis factor (TNF)-alpha and IL-1beta, resulted in mobilization from the WPBs and subsequent secretion of OPG protein into the culture supernatant. Furthermore, TNF-alpha treatment of HUVEC resulted in a sustained increase in OPG mRNA levels and protein secretion over the 24-h treatment period. Reciprocal immunoprecipitation experiments revealed that while not associated with P-Selectin, OPG is physically complexed with vWF both within the WPB and following secretion from endothelial cells. Interestingly, this association was also identified in human peripheral blood plasma. In addition to its interaction with vWF, we show that OPG also binds with high avidity to the vWF reductase, thrombospondin (TSP-1), raising the intriguing possibility that OPG may provide a link between TSP-1 and vWF. In summary, the intracellular localization of OPG in HUVEC, in association with vWF, together with its rapid and sustained secretory response to inflammatory stimuli, strongly support a modulatory role in vascular injury, inflammation and hemostasis. 相似文献
9.
Effect of cytochalasin B on lymphocyte stimulation induced by concanavalin A or periodate 总被引:1,自引:0,他引:1
The effects of cytochalasin B on lymphocyte stimulation induced by concanavalin A (Con A) and by periodate were investigated. At low concentrations (0.1 – 1 μg/ml) cytochalosin B greatly potentiated the responses to these two mitogens. Cytochalasin B was most effective when added with the mitogens at the beginning of incubation. The action of cytochalasin B at low concentration was suggested to be on an early process of DNA synthesis induced by these mitogens. 相似文献
10.
The Epac-Rap1 signaling pathway controls cAMP-mediated exocytosis of Weibel-Palade bodies in endothelial cells 总被引:1,自引:0,他引:1
van Hooren KW van Agtmaal EL Fernandez-Borja M van Mourik JA Voorberg J Bierings R 《The Journal of biological chemistry》2012,287(29):24713-24720
Endothelial cells contain specialized storage organelles called Weibel-Palade bodies (WPBs) that release their content into the vascular lumen in response to specific agonists that raise intracellular Ca(2+) or cAMP. We have previously shown that cAMP-mediated WPB release is dependent on protein kinase A (PKA) and involves activation of the small GTPase RalA. Here, we have investigated a possible role for another PKA-independent cAMP-mediated signaling pathway in the regulation of WPB exocytosis, namely the guanine nucleotide exchange factor Epac1 and its substrate, the small GTPase Rap1. Epinephrine stimulation of endothelial cells leads to Rap1 activation in a PKA-independent fashion. siRNA-mediated knockdown of Epac1 abolished epinephrine-induced activation of Rap1 and resulted in decreased epinephrine-induced WPB exocytosis. Down-regulation of Rap1 expression and prevention of Rap1 activation through overexpression of Rap1GAP effectively reduced epinephrine- but not thrombin-induced WPB exocytosis. Taken together, these data uncover a new Epac-Rap1-dependent pathway by which endothelial cells can regulate WPB exocytosis in response to agonists that signal through cAMP. 相似文献
11.
Lui-Roberts WW Ferraro F Nightingale TD Cutler DF 《Molecular biology of the cell》2008,19(12):5072-5081
Formation of secretory organelles requires the coupling of cargo selection to targeting into the correct exocytic pathway. Although the assembly of regulated secretory granules is driven in part by selective aggregation and retention of content, we recently reported that adaptor protein-1 (AP-1) recruitment of clathrin is essential to the initial formation of Weibel-Palade bodies (WPBs) at the trans-Golgi network. A selective co-aggregation process might include recruitment of components required for targeting to the regulated secretory pathway. However, we find that acquisition of the regulated secretory phenotype by WPBs in endothelial cells is coupled to but can be separated from formation of the distinctive granule core by ablation of the AP-1 effectors aftiphilin and γ-synergin. Their depletion by small interfering RNA leads to WPBs that fail to respond to secretagogue and release their content in an unregulated manner. We find that these non-responsive WPBs have density, markers of maturation, and highly multimerized von Willebrand factor similar to those of wild-type granules. Thus, by also recruiting aftiphilin/γ-synergin in addition to clathrin, AP-1 coordinates formation of WPBs with their acquisition of a regulated secretory phenotype. 相似文献
12.
Ukropec JA Hollinger MK Salva SM Woolkalis MJ 《The Journal of biological chemistry》2000,275(8):5983-5986
Thrombin-mediated changes in endothelial cell adherens junctions modulate vascular permeability. We demonstrate that the nonreceptor protein-tyrosine phosphatase SHP2 co-precipitates with VE-cadherin complexes in confluent, quiescent human umbilical vein endothelial cells. Ligand-binding blots using a SHP2-glutathione S-transferase fusion peptide established that SHP2 associates selectively with beta-catenin in VE-cadherin complexes. Thrombin treatment of human umbilical vein endothelial cells promotes SHP2 tyrosine phosphorylation and dissociation from VE-cadherin complexes. The loss of SHP2 from the cadherin complexes correlates with a dramatic increase in the tyrosine phosphorylation of beta-catenin, gamma-catenin, and p120-catenin complexed with VE-cadherin. We propose that thrombin regulates the tyrosine phosphorylation of VE-cadherin-associated beta-catenin, gamma-catenin, and p120-catenin by modulating the quantity of SHP2 associated with VE-cadherin complexes. Such changes in adherens junction complex composition likely underlie thrombin-elicited alterations in endothelial monolayer permeability. 相似文献
13.
We determined the kinetics of the induction of chromosomal aberrations and micronuclei (MN) by mitomycin C (MMC, 0.1 µg/ml) in Chinese hamster ovary (CHO) cells treated with cytochalasin B (Cyt-B, 3 µg/ml). In cells treated with Cyt-B as well as with Cyt-B plus MMC the highest yield of binucleated cells was obtained 24 h after treatment. After 40 h of treatment with Cyt-B the frequency of MN in binucleated cells was significantly higher than that observed at previous times in the same cultures as well as in controls. In cultures treated with MMC the frequency of MN increased with time, reaching the highest value at 24 h. The frequency of chromosomal aberrations was also significantly higher in cells treated both with Cyt-B and Cyt-B plus MMC than in controls and exceeded that of MN in parallel cultures. These data confirm the capacity of MMC to induce chromosomal alterations in mammalian cells; in particular they indicate that Cyt-B is able to induce cytogenetic effects in CHO cells. Using immunofluorescence microscopy, after reaction with CREST antikinetochore antibodies, we found that in cells treated with Cyt-B or Cyt-B plus MMC the frequency of MN without kinetochore was, respectively, about 70 and 85%, indicating that under our experimental conditions MN originate mainly from acentric chromatid fragments. Present data suggest that the method based on the blockage of cytokinesis by Cyt-B normally used in the MN assay should be reconsidered. 相似文献
14.
Constantine E. Vorgias Georg A. Perides Peter Traub Constantine E. Sekeris 《Bioscience reports》1988,8(2):193-197
The involvement of intracellular cytoskeletal elements in the translocation of the dexamethasone-receptor complex from the cytoplasm to the nucleus was studied using the cytoskeleton-disrupting agents colcemide, colchicine and cytochalasin B. These compounds did not affect the translocation of the hormone-receptor complex. We conclude that microfilaments and microtubules do not play a role in the translocation of the glucocorticoid hormone-receptor complex from the cytoplasm to the nucleus.Abbreviations EAT-cells
Ehrlich Ascites Tumor Cells
- MEM
Minimum Essential Medium 相似文献
15.
Background
Point mutations resulting in reduced factor VIII (FVIII) binding to von Willebrand factor (VWF) are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood.Methodology/Principal Findings
We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser) to severe (Tyr1680Phe, Ser2119Tyr) VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH.Conclusions
Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo. 相似文献16.
A prolonged action of cytochalasin B results in the formation of numerous multipolar mitoses (26%) in Chinese hamster cell cultures. The transition to multipolar mitoses in the presence of cytochalasin B is not accompanied by K-mitotic delay. It is shown that a multipolar mitosis without cytoplasmic division is one of the main causes of multinucleation development in cytochalasin B-treated cultures. After stopping the drug action the cytochalasin B-induced multinucleate cells continue to divide by multipolar mitosis. In this case it completes with cytokinesis and, probably, leads to a decrease in the number of nuclei per cell. The origin of multipolar mitotic apparatus after the action of cytochalasin B is discussed in addition to the role of multipolar mitosis in formation and proliferation of multinucleate cells. 相似文献
17.
Exposure to 2.0 micrograms/ml cytochalasin B causes loss of viability in Friend erythroleukaemia cells. This effect is only observed however in cells undergoing mitosis. 相似文献
18.
19.
Cases of asynchronous progression with separate nuclei of S-period and initial mitotic stages in multinucleate cells were discovered in Chinese hamster cell cultures during a prolonged action of cytochalasin B (7 days) and after its stopping (7 days of cell cultivation without drug). The interphase asynchrony under experimental conditions vary in value corresponding to the level of interphase asynchrony in spontaneous multinucleate cells in control cultures. So, the interphase asynchrony in cytochalasin B-induced multinucleate cells is suggested not to be connected with the drug action. Fusion of heterophase cells and a high level of proliferation activity of multinucleate cells seem to be the main reason of interphase asynchrony both in control cultures and in experimental conditions. Unlike the interphase asynchrony, the appearance of the mitotic asynchrony in multinucleate cells is shown to be connected with the action of cytochalasin B. The high level of the mitotic asynchrony remains after the stopping of drug action. A conclusion is made that mitotic asynchrony of nuclei, along with multipolar mitosis and cytokinesis inhibition, is one more display of the cytotoxic action of cytochalasin B on mitosis. 相似文献
20.
Vascular endothelial cells play an important role in coagulation regulation of vascular tone and in a variety of synthetic and metabolic functions. Endothelial cells also have a pivotal role in immunological diseases atherogenesis and tumor angiogenesis. Endothelial cells are often used as system to study the pathophysiology of late complications in diabetes mellitus atherosclerotic damages and leukocyte adhesion in inflammatory diseases. Most of the studies have been performed on primary arterial and venous endothelial cell cultures with problems such as availability of autoptic material and reproducibility of cell cultures. We have isolated and characterized a novel system of proliferating long-term cultures of human aortic endothelial cells that maintain their differentiated characteristics for many generations in vitro. They produce antithrombotic and thrombotic factors such as t-PA and PAI-1 and respond to TNFalpha, an important factor correlated with the inflammatory process by modifying growth characteristics by producing cytokines such as GM-CSF by expressing ICAM-1 on the surface and by producing large amounts of nitric oxide and endothelin. This new system may be very useful to understand and study the molecular mechanisms involved in many vascular alteration pathologies and in the aging process. 相似文献