首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CXCR4 is a chemokine receptor and a coreceptor for T-cell-line-tropic (X4) and dual-tropic (R5X4) human immunodeficiency virus type 1 (HIV-1) isolates. Cells coexpressing CXCR4 and CD4 will fuse with appropriate HIV-1 envelope glycoprotein (Env)-expressing cells. The delineation of the critical regions involved in the interactions within the Env-CD4-coreceptor complex are presently under intensive investigation, and the use of chimeras of coreceptor molecules has provided valuable information. To define these regions in greater detail, we have employed a strategy involving alanine-scanning mutagenesis of the extracellular domains of CXCR4 coupled with a highly sensitive reporter gene assay for HIV-1 Env-mediated membrane fusion. Using a panel of 41 different CXCR4 mutants, we have identified several charged residues that appear important for coreceptor activity for X4 Envs; the mutations E15A (in which the glutamic acid residue at position 15 is replaced by alanine) and E32A in the N terminus, D97A in extracellular loop 1 (ecl-1), and R188A in ecl-2 impaired coreceptor activity for X4 and R5X4 Envs. In addition, substitution of alanine for any of the four extracellular cysteines alone resulted in conformational changes of various degrees, while mutants with paired cysteine deletions partially retained their structure. Our data support the notion that all four cysteines are involved in disulfide bond formation. We have also identified substitutions which greatly enhance or convert CXCR4's coreceptor activity to support R5 Env-mediated fusion (N11A, R30A, D187A, and D193A), and together our data suggest the presence of conserved extracellular elements, common to both CXCR4 and CCR5, involved in their coreceptor activities. These data will help us to better detail the CXCR4 structural requirements exhibited by different HIV-1 strains and will direct further mutagenesis efforts aimed at better defining the domains in CXCR4 involved in the HIV-1 Env-mediated fusion process.  相似文献   

2.
Laboratory isolates of human immunodeficiency virus type 1 (HIV-1) that utilize CXCR4 as a coreceptor infect primary human macrophages inefficiently even though these express a low but detectable level of cell surface CXCR4. In contrast, infection of primary macrophages by primary CXCR4-tropic HIV-1 isolates is readily detectable. Here, we provide evidence suggesting that this difference in cell tropism results from a higher requirement for cell surface CXCR4 for infection by laboratory HIV-1 isolates. Transfected COS7 cells that express a high level of CD4 but a low level of CXCR4 were infected significantly more efficiently by two primary CXCR4-tropic HIV-1 isolates compared to the prototypic laboratory HIV-1 isolate IIIB. More importantly, overexpression of either wild-type or signaling-defective CXCR4 on primary macrophages dramatically enhanced the efficiency of infection by the laboratory HIV-1 isolate yet only modestly enhanced infection by either primary CXCR4-tropic virus. Overexpression of CD4 had, in contrast, only a limited effect on macrophage infection by the laboratory HIV-1, although infection by the primary isolates was markedly enhanced. We therefore conclude that the laboratory CXCR4-tropic HIV-1 isolate exhibits a significantly higher CXCR4 requirement for efficient infection than do the primary CXCR4-tropic isolates and that this difference can explain the poor ability of the laboratory HIV-1 isolate to replicate in primary macrophages. More generally, we propose that the cell tropisms displayed by different strains of HIV-1 in culture can largely be explained on the basis of differential requirements for cell surface CD4 and/or coreceptor expression levels.  相似文献   

3.
Coreceptor usage by Envs from diverse primary human immunodeficiency virus type 1 isolates was analyzed by a vaccinia virus-based expression and assay system. Usage of recombinant CCR5 and CXCR4 correlated closely with fusogenicity toward macrophages and T-cell lines expressing endogenous coreceptors. Surprisingly, recombinant CCR3 was utilized by most primary and T-cell-line-adapted Envs. Endogenous CXCR4 in macrophages was functional as a coreceptor.  相似文献   

4.
Some individuals infected with only R5 strains of human immunodeficiency virus type 1 progress to AIDS as quickly as individuals harboring X4 strains. We determined that three R5 viruses were much less pathogenic than an X4 virus in SCID-hu Thy/Liv mice, suggesting that R5 virus-mediated rapid disease progression is associated with host, not viral, factors.  相似文献   

5.
HIV-1的表型及其感染的细胞嗜性   总被引:2,自引:0,他引:2  
张驰宇 《动物学研究》2004,25(4):363-368
HIV-1的表型分为合胞体诱导型(syncytium-inducing,SI)和非合胞体诱导型(non-syncytium-inducing,NSI)。依据所用辅助受体和感染靶细胞的不同,HIV-1又被分为R5、X4和R5X4型。R5和X4型病毒分别利用CCR5和CXCR4作为辅助受体,而R5X4型病毒可利用这两种辅助受体。在病毒的复制力、细胞嗜性以及合胞体诱导能力上,SI型与X4型病毒一致,NSI型与R5型病毒一致。在HIV-1感染过程中,疾病的发展伴随着病毒从NSI型向SI型、及R5型向X4型的转变。HIV-1的表型影响和决定着HIV-1的感染、传播及AIDS的疾病进程。HIV-1的表型和细胞嗜性主要由病毒gp120的V3区(特别是第11和25位的氨基酸)决定。V3区的氨基酸序列信息,将为预测HIV-1的表型,以及病毒感染后的疾病进程提供生物信息学的依据。  相似文献   

6.
We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies.  相似文献   

7.
Although typical primary isolates of human immunodeficiency virus type 1 (HIV-1) are relatively neutralization resistant, three human monoclonal antibodies and a small number of HIV-1+ human sera that neutralize the majority of isolates have been described. The monoclonal antibodies (2G12, 2F5, and b12) represent specificities that a putative vaccine should aim to elicit, since in vitro neutralization has been correlated with protection against primary viruses in animal models. Furthermore, a neutralization escape mutant to one of the antibodies (b12) selected in vitro remains sensitive to neutralization by the other two (2G12 and 2F5) (H. Mo, L. Stamatatos, J. E. Ip, C. F. Barbas, P. W. H. I. Parren, D. R. Burton, J. P. Moore, and D. D. Ho, J. Virol. 71:6869–6874, 1997), supporting the notion that eliciting a combination of such specificities would be particularly advantageous. Here, however, we describe a small subset of viruses, mostly pediatric, which show a high level of neutralization resistance to all three human monoclonal antibodies and to two broadly neutralizing sera. Such viruses threaten antibody-based antiviral strategies, and the basis for their resistance should be explored.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid mutation R10A/K11A abolishes viral replication when present in proviral clone HIV-1(HXB-2), but it was found to have minimal effect on replication of the closely related HIV-1(NL4-3). Functional mapping demonstrated that a nonconservative amino acid change at nucleocapsid residue 24 (threonine in HIV-1(HXB-2), isoleucine in HIV-1(NL4-3)) is the major determinant of the different R10A/K11A phenotypes in these two proviruses. Threonine-isoleucine exchanges appear to modify the R10A/K11A phenotype via effects on virion RNA-packaging efficiency. The improved packaging seen with hydrophobic isoleucine is consistent with solution structures localizing this residue to a hydrophobic pocket that contacts guanosine bases in viral genomic RNA stem-loops critical for packaging.  相似文献   

9.
We tested chemokine receptor subset usage by diverse, well-characterized primary viruses isolated from peripheral blood by monitoring viral replication with CCR1, CCR2b, CCR3, CCR5, and CXCR4 U87MG.CD4 transformed cell lines and STRL33/BONZO/TYMSTR and GPR15/BOB HOS.CD4 transformed cell lines. Primary viruses were isolated from 79 men with confirmed human immunodeficiency virus type 1 (HIV-1) infection from the Chicago component of the Multicenter AIDS Cohort Study at interval time points. Thirty-five additional well-characterized primary viruses representing HIV-1 group M subtypes A, B, C, D, and E and group O and three primary simian immunodeficiency virus (SIV) isolates were also used for these studies. The restricted use of the CCR5 chemokine receptor for viral entry was associated with infection by a virus having a non-syncytium-inducing phenotype and correlated with a reduced rate of disease progression and a prolonged disease-free interval. Conversely, broadening chemokine receptor usage from CCR5 to both CCR5 and CXCR4 was associated with infection by a virus having a syncytium-inducing phenotype and correlated with a faster rate of CD4 T-cell decline and progression of disease. We also observed a greater tendency for infection with a virus having a syncytium-inducing phenotype in men heterozygous for the defective CCR5 Δ32 allele (25%) than in those men homozygous for the wild-type CCR5 allele (6%) (P = 0.03). The propensity for infection with a virus having a syncytium-inducing phenotype provides a partial explanation for the rapid disease progression among some men heterozygous for the defective CCR5 Δ32 allele. Furthermore, we did not identify any primary viruses that used CCR3 as an entry cofactor, despite this CC chemokine receptor being expressed on the cell surface at a level commensurate with or higher than that observed for primary peripheral blood mononuclear cells. Whereas isolates of primary viruses of SIV also used STRL33/BONZO/TYMSTR and GPR15/BOB, no primary isolates of HIV-1 used these particular chemokine receptor-like orphan molecules as entry cofactors, suggesting a limited contribution of these other chemokine receptors to viral evolution. Thus, despite the number of chemokine receptors implicated in viral entry, CCR5 and CXCR4 are likely to be the physiologically relevant chemokine receptors used as entry cofactors in vivo by diverse strains of primary viruses isolated from blood.  相似文献   

10.
It has been proposed that changes in cell surface concentrations of coreceptors may control infections by human immunodeficiency virus type 1 (HIV-1), but the mechanisms of coreceptor function and the concentration dependencies of their activities are unknown. To study these issues and to generate stable clones of adherent cells able to efficiently titer diverse isolates of HIV-1, we generated two panels of HeLa-CD4/CCR5 cells in which individual clones express either large or small quantities of CD4 and distinct amounts of CCR5. The panels were made by transducing parental HeLa-CD4 cells with the retroviral vector SFF-CCR5. Derivative clones expressed a wide range of CCR5 quantities which were between 7.0 × 102 and 1.3 × 105 molecules/cell as measured by binding antibodies specific for CCR5 and the chemokine [125I]MIP1β. CCR5 was mobile in the membranes, as indicated by antibody-induced patching. In cells with a large amount of CD4, an unexpectedly low trace of CCR5 (between 7 × 102 and 2.0 × 103 molecules/cell) was sufficient for maximal susceptibility to all tested HIV-1, including primary patient macrophagetropic and T-cell-tropic isolates. Indeed, the titers as indicated by immunoperoxidase staining of infected foci were as high as the tissue culture infectious doses measured in human peripheral blood mononuclear cells. In contrast, cells with a small amount of CD4 required a much larger quantity of CCR5 for maximal infection by macrophagetropic HIV-1 (ca. 1.0 × 104 to 2.0 × 104 molecules/cell). Cells that expressed low and high amounts of CD4 were infected with equal efficiencies when CCR5 concentrations were above threshold levels for maximal infection. Our results suggest that the concentrations of CD4 and CCR5 required for efficient infections by macrophagetropic HIV-1 are interdependent and that the requirements for each are increased when the other component is present in a limiting amount. We conclude that CD4 and CCR5 directly or indirectly interact in a concentration-dependent manner within a pathway that is essential for infection by macrophagetropic HIV-1. In addition, our results suggest that multivalent virus-receptor bonds and diffusion in the membrane contribute to HIV-1 infections.  相似文献   

11.
We recently reported that a cationic peptide, T22 ([Tyr(5,12), Lys(7)]-polyphemusin II), specifically inhibits human immunodeficiency virus type 1 (HIV-1) infection mediated by CXCR4 (T. Murakami et al., J. Exp. Med. 186:1389-1393, 1997). Here we demonstrate that T22 effectively inhibits replication of T-tropic HIV-1, including primary isolates, but not of non-T-tropic strains. By using a panel of chimeric viruses between T- and M-tropic HIV-1 strains, viral determinants for T22 susceptibility were mapped to the V3 loop region of gp120. T22 bound to CXCR4 and interfered with stromal-cell-derived factor-1alpha-CXCR4 interactions in a competitive manner. Blocking of anti-CXCR4 monoclonal antibodies by T22 suggested that the peptide interacts with the N terminus and two of the extracellular loops of CXCR4. Furthermore, the inhibition of cell-cell fusion in cells expressing CXCR4/CXCR2 chimeric receptors suggested that determinants for sensitivity of CXCR4 to T22 include the three extracellular loops of the coreceptor.  相似文献   

12.
To investigate the temporal relationship between human immunodeficiency virus type 1 (HIV-1) replicative capacity and syncytium-inducing (SI) phenotype, biological and genetic characteristics of longitudinally obtained virus clones from two HIV-1-infected individuals who developed SI variants were studied. In one individual, the emergence of rapidly replicating SI and non-syncytium-inducing (NSI) variants was accompanied by a loss of the slowly replicating NSI variants. In the other subject, NSI variants were always slowly replicating, while the coexisting SI variants showed an increase in the rate of replication. Irrespective their replicative capacity, the NSI variants remained present throughout the infection in both individuals. Phylogenetic analysis of the V3 region showed early branching of the SI variants from the NSI tree. Successful SI conversion seemed a unique event since no SI variants were found among later-stage NSI variants. This was also confirmed by the increasing evolutionary distance between the two subpopulations. At any time point during the course of the infection, the variation within the coexisting SI and NSI populations did not exceed 2%, indicating continuous competition within each viral subpopulation.  相似文献   

13.
14.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

15.
Microglia are the main human immunodeficiency virus (HIV) reservoir in the central nervous system and most likely play a major role in the development of HIV dementia (HIVD). To characterize human adult microglial chemokine receptors, we analyzed the expression and calcium signaling of CCR5, CCR3, and CXCR4 and their roles in HIV entry. Microglia expressed higher levels of CCR5 than of either CCR3 or CXCR4. Of these three chemokine receptors, only CCR5 and CXCR4 were able to transduce a signal in microglia in response to their respective ligands, MIP-1β and SDF-1α, as recorded by single-cell calcium flux experiments. We also found that CCR5 is the predominant coreceptor used for infection of human adult microglia by the HIV type 1 dementia isolates HIV-1DS-br, HIV-1RC-br, and HIV-1YU-2, since the anti-CCR5 antibody 2D7 was able to dramatically inhibit microglial infection by both wild-type and single-round luciferase pseudotype reporter viruses. Anti-CCR3 (7B11) and anti-CXCR4 (12G5) antibodies had little or no effect on infection. Last, we found that virus pseudotyped with the DS-br and RC-br envelopes can infect cells transfected with CD4 in conjunction with the G-protein-coupled receptors APJ, CCR8, and GPR15, which have been previously implicated in HIV entry.  相似文献   

16.
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIVSF162P3N. The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4+ T-cell count but followed rather than preceded the onset of CD4+ T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIVSF162P3N infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.The human immunodeficiency virus (HIV) enters target cells via binding of the viral envelope glycoprotein to the CD4 receptor, triggering envelope conformational changes that allow for interaction with either the CCR5 or CXCR4 chemokine receptor (1, 3, 8, 15, 16, 18). Most HIV type 1 (HIV-1) transmissions are initiated with CCR5-using (R5) viruses (58, 68). With time, CXCR4-tropic (X4) viruses emerge and coexist with R5 viruses in close to 50% of subtype B-infected individuals, and this is accompanied by a rise in viremia, rapid CD4+ T-cell loss, and progression to disease (4, 7, 11, 34, 57, 65). The mechanistic basis and reasons for HIV-1 coreceptor switch, however, are still not well understood. Several factors including high viral load, low CD4+ T-cell numbers, reduced availability of CCR5+ cells, and progressive immune dysfunction have been proposed as playing important roles (48, 54). Since X4 virus emergence is associated with a faster rate of disease progression, insights into the determinants of HIV-1 coreceptor switch are of interest in understanding viral pathogenesis. Furthermore, with the introduction of CCR5 entry inhibitors as anti-HIV therapeutics (19, 23, 24, 38), there is a need not only to identify the presence of X4 variants in patients when treatment options are considered but also to understand the factors that influence X4 virus evolution. Although the majority of individuals failing on short-term CCR5 antagonist monotherapy harbor preexisting minor X4 variants (71), it is conceivable that given the right conditions and selective forces, inhibiting HIV-1 entry via CCR5 may drive the virus to evolve to CXCR4 usage and exacerbate disease. An animal model that faithfully recapitulates the process of coreceptor switch will be highly useful to study and identify the determinants and conditions that facilitate the change in coreceptor preference. In addition, an animal model provides the opportunity to track the kinetics of coreceptor switching at different anatomical sites, which may inform on the mechanisms of X4 virus emergence.In this regard, we recently reported coreceptor switch in two of nine rhesus macaques (RM) inoculated intravenously with simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N) that bears an HIV-1 CCR5-tropic Env (28, 29). In order to establish a reproducible model for coreceptor switch, however, it was crucial to document additional switching events. Furthermore, since the majority of HIV transmission occurs via mucosal surfaces, it was important to demonstrate coreceptor switch in macaques infected with R5 SHIVSF162P3N by the mucosal route to validate this animal model in studying the in vivo evolution of HIV-1 coreceptor usage. Additionally, the tissue compartment(s) where CXCR4-using viruses evolve and expand is not well characterized. A recent study indicates that the thymus may play an important role in the evolution and/or amplification of coreceptor variants in pediatric HIV infection (56). Since the thymus is the primary source of T lymphopoiesis during early life (45) and since CXCR4 is the predominant coreceptor expressed on thymocytes (33, 64), this organ would seem to provide the ideal milieu for X4 amplification in infants and children. Indeed, we previously showed that whereas X4 SHIV infection of newborn RM resulted in severe thymic involution, R5 SHIV infection induced only a minor disruption in thymic morphology (55), lending support to the idea that the thymus is a preferred site for X4 replication in pediatric HIV infections. Nevertheless, thymopoietic function declines with age (17, 42, 60), and naïve T cells that express high levels of CXCR4 are also enriched in peripheral lymph nodes (5, 27, 36, 66). Thus, the role of the thymus and other lymphoid tissues in HIV-1 coreceptor switch in older individuals remains to be determined. To address these issues, we inoculated adult RM intrarectally (i.r.) with R5 SHIVSF162P3N and performed frequent longitudinal blood and tissue samplings. Our goal was to document changes in coreceptor preference in mucosally infected macaques, as well as to obtain a more detailed picture of the kinetics and site of X4 virus evolution and amplification in vivo.  相似文献   

17.
The role of human immunodeficiency virus (HIV) strain variability remains a key unanswered question in HIV dementia, a condition affecting around 20% of infected individuals. Several groups have shown that viruses within the central nervous system (CNS) of infected patients constitute an independently evolving subset of HIV strains. A potential explanation for the replication and sequestration of viruses within the CNS is the preferential use of certain chemokine receptors present in microglia. To determine the role of specific chemokine coreceptors in infection of adult microglial cells, we obtained a small panel of HIV type 1 brain isolates, as well as other HIV strains that replicate well in cultured microglial cells. These viruses and molecular clones of their envelopes were used in infections, in cell-to-cell fusion assays, and in the construction of pseudotypes. The results demonstrate the predominant use of CCR5, at least among the major coreceptors, with minor use of CCR3 and CXCR4 by some of the isolates or their envelope clones.  相似文献   

18.
The coreceptors used by primary syncytium-inducing (SI) human immunodeficiency virus type 1 isolates for infection of primary macrophages were investigated. SI strains using only CXCR4 replicated equally well in macrophages with or without CCR5 and were inhibited by several different ligands for CXCR4 including SDF-1 and bicyclam derivative AMD3100. SI strains that used a broad range of coreceptors including CCR3, CCR5, CCR8, CXCR4, and BONZO infected CCR5-deficient macrophages about 10-fold less efficiently than CCR5+ macrophages. Moreover, AMD3100 blocked infection of CCR5-negative macrophages by these strains. Our results therefore demonstrate that CXCR4, as well as CCR5, is used for infection of primary macrophages but provide no evidence for the use of alternative coreceptors.  相似文献   

19.
CCR5-utilizing (R5) and CXCR4-utilizing (X4) strains of human immunodeficiency virus type 1 (HIV-1) have been studied intensively in vitro, but the pathologic correlates of such differential tropism in vivo remain incompletely defined. In this study, X4 and R5 strains of HIV-1 were compared for tropism and pathogenesis in SCID-hu Thy/Liv mice, an in vivo model of human thymopoiesis. The X4 strain NL4-3 replicates quickly and extensively in thymocytes in the cortex and medulla, causing significant depletion. In contrast, the R5 strain Ba-L initially infects stromal cells including macrophages in the thymic medulla, without any obvious pathologic consequence. After a period of 3 to 4 weeks, Ba-L infection slowly spreads through the thymocyte populations, occasionally culminating in thymocyte depletion after week 6 of infection. During the entire time of infection, Ba-L did not mutate into variants capable of utilizing CXCR4. Therefore, X4 strains are highly cytopathic after infection of the human thymus. In contrast, infection with R5 strains of HIV-1 can result in a two-phase process in vivo, involving apparently nonpathogenic replication in medullary stromal cells followed by cytopathic replication in thymocytes.  相似文献   

20.
CD4-immunoglobulin G2 (IgG2) is a fusion protein comprising human IgG2 in which the Fv portions of both heavy and light chains have been replaced by the V1 and V2 domains of human CD4. Previous studies found that CD4-IgG2 potently neutralizes a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates in vitro and ex vivo. The current report demonstrates that CD4-IgG2 protects against infection by primary isolates of HIV-1 in vivo, using the hu-PBL-SCID mouse model. Passive administration of 10 mg of CD4-IgG2 per kg of body weight protected all animals against subsequent challenge with 10 mouse infectious doses of the laboratory-adapted T-cell-tropic isolate HIV-1LAI, while 50 mg of CD4-IgG2 per kg protected four of five mice against the primary isolates HIV-1JR-CSF and HIV-1AD6. In contrast, a polyclonal HIV-1 Ig fraction exhibited partial protection against HIV-1LAI at 150 mg/kg but no significant protection against the primary HIV-1 isolates. The results demonstrate that CD4-IgG2 effectively neutralizes primary HIV-1 isolates in vivo and can prevent the initiation of infection by these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号