首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viviparous African skink, Eumecia anchietae, exhibits a matrotrophic fetal nutritional pattern. Until well after the limb bud stage, extravitelline nutritional provision is in the form of holocrine secretion originating from the stratified uterine epithelium of the uterine incubation chambers. Uterine secretions are absorbed by a specialized yolk sac ectoderm and chorioallantois through histotrophy. The yolk sac is not in close contact with the uterine lining from the limb bud stage onwards. The yolk sac ectoderm forms invaginations filled with uterine secretion and consists of a single layer of vacuolated hypertrophied cells bearing microvilli. The chorioallantois at the limb bud stage is extensive, well-vascularized, and not intimately associated with the uterine epithelium. Where the uterus is folded, the chorioallantois may interdigitate loosely. Chorionic cells are low to high columnar, clearly vacuolated, and bear microvilli. The allantoic layer consists primarily of squamous cells exhibiting villous projections. By the time embryos have well-defined digits, the specialized yolk sac ectoderm has regressed and the yolk sac lumen has been invaded by vitelline cells. The chorioallantois is very extensive and in areas greatly folded. Where it contacts the uterine epithelium, a proper chorioallantoic placenta is formed. Cell layers of the chorioallantois and uterine epithelium are thin and cuboidal to squamous in appearance. The chorioallantoic placenta is simple in structure, occurs throughout the incubation chamber, and is epitheliochorial in arrangement. It is unknown whether the placentome observed in other highly matrotrophic scincids is formed in late stage embryos of this species.  相似文献   

2.
Synopsis The Atlantic sharpnose shark is a viviparous anamniote that develops an epitheliochorial yolksac placenta. Initially, contents of the yolksac nourish the embryos. Yolk is partially digested in the yolk syncytial-endoderm complex and subsequently transferred to the vitelline circulation. Yolk is also transported by ciliary activity of the yolk stalk ductus to the fetal gut for digestion. When embryos are 4.0cm in length, vascular ridges, termed appendiculae, develop on the yolk stalk. As yolk stores are depleted, the yolksac differentiates into the fetal portion of the placenta and the uterus abutting the yolksac differentiates into the maternal portion of the placenta. The yolk stalk differentiates into an elongate umbilical cord. The uterine epithelium produces secretions that are positive by the periodic acid-Schiff and alcian blue methods and metachromatic when stained with toluidine blue. Uterine capillaries are continuous and the surface epithelium is active both in secretion and transport of nutrients. When the embryos are 7–10cm in length, appendiculae are elongate, branched and populated by separate microvillar and granulated cells. Appendiculae may function as a paraplacental nutrient absorptive organ and be involved in the regulation of osmolarity of periembryonic fluids. The fetal placenta has two functional regions: a proximal portion that is presumed to function as a steroid producing organ and a distal portion that effects nutrient and metabolic exchange between the mother and fetus. Characteristics of the fetal placenta include endocytotic activity, crystalline-like cytoplasmic bodies and fenestrated capillaries. Fetal and maternal components of the placenta are separated by the egg envelope.  相似文献   

3.
During ontogeny, the yolk sac of some viviparous sharks differentiates into a yolk sac placenta that persists to term. The placenta is non-invasive and non-deciduate. Hematrophic transport is the major route of nutrient transfer from mother to fetus. The placental unit consists of: (1) an umbilical stalk; (2) the smooth, proximal portion of the placenta; (3) the distal, rugose portion; (4) the egg envelope; and (5) the maternal uterine tissues. Exchange of metabolites is effected through the intervening egg envelope. The distal rugose portion of the placenta is the fetal attachment site. It consists of: (1) surface epithelial cells; (2) a collagenous stroma with vitelline capillaries; and (3) an innermost boundary cell layer. The columnar surface epithelial cells are closely apposed to the inner surface of the egg envelope. Wide spaces occur between the lateral margins of adjacent cells. Surface epithelial cells contain an extensive apical canalicular-tubular system and many whorl-like inclusions in their basal cytoplasm. Capillaries of the vitelline circulation are closely situated to these cells. A well-developed collagenous stroma separates the surface epithelium from an innermost boundary cell layer. In vitro exposure of full-term placentae to solutions of trypan blue and horseradish peroxidase (HRP) reveals little uptake by the smooth portion of the placenta but rapid absorption by the surface epithelial cells of the distal, rugose portion. HRP enters these cells by an extensive apical system of smooth-walled membranous anastomosing canaliculi and tubules. Prominent whorl-like inclusions that occupy the basal cytoplasm of the surface cells, adjacent to the pinocytotically active endothelium of the vitelline capillaries, are hypothesized to be yolk proteins that are transferred from the mother to embryo throughout gestation.  相似文献   

4.
Synopsis Using plastic embedding techniques and semithin sections, in order to overcome the difficult sectioning of yolky eggs, we have been able to carry out histological study of the external yolksac from fertilization until birth in the oviparous dogfishScyliorhinus canicula. The endoderm and its contacting giant yolk nuclei remained very flat, seemingly inactive, during the larger part of development. They became activated only when the external yolksac (EYS) began to shrink. This activation increased along a vegetal-animal gradient in the EYS, but it was essentially restricted to the parts located near the yolk stalk. A statistical study of oocyte, yolk, embryo and newborn fresh and dry weights confirmed that the mass of dry tissue in the embryo (30mg) and in EYS wall (<1 mg) at mid-development were still very low compared to 0.8–1.5 g mass of yolk available for development. This explains why yolk weight remained practically the same during the first half of development. The end of this first period was marked by entry into the pre-hatching state at 85–115 days under laboratory conditions (14–16°C). At this time, yolk began to enter the spiral gut, where it was digested during the second half of development and during one week period after eclosion. Eclosion occurred 170–220 days after egg laying or extraction from oviduct. Two internal storage organs were studied biometrically in the newborn: the internal yolksac (IYS), and the liver, which was fully developed at birth. Both IYS and liver dry weights corresponded to about 10% of the original yolk, while the gut was only 2%, and the rest of the newborn body 58%. Thus, about 20% of yolk dry mass was consumed during development, a figure that is low for oviparous animals.  相似文献   

5.
The Atlantic sharpnose shark Rhizoprionodon terraenovae (Richardson) is a small carcharhinid that is a common year-round resident along the southeast coast of the United States. It is viviparous and its embryos develop an epithelio-vitelline placenta. Females enter shallow water to give birth in late May and early June. Mating occurs shortly after parturition, and four to seven eggs are ovulated. Fertilized eggs attain the blastoderm stage in early June to early July. Separate compartments for each egg are formed in the uterus when the embryos reach 3–30 mm. Embryos depend on yolk for the first 8 weeks of development. When embryos reach 72 mm their yolk supply is nearly depleted and they shift to matrotrophic nutrition. When the embryos reach 40–55 mm, placental development begins with the vascularization of the yolk sac where it contacts the uterine wall. Implantation occurs at an age of 8–10 weeks by which time the embryos reach 70–85 mm. The expanding yolk sac engulfs the maternal placental villi, and its surface interdigitates with the villi to form the placenta. The rest of the lumenal surface of the uterus is covered by non-placental villi that appear shortly after implantation. Histotrophe production by the non-placental villi begins just after their formation. The placenta grows continuously during gestation. The egg envelope is present throughout gestation, separating maternal and fetal tissues. Embryos develop numerous appendiculae on the umbilical cord. Young sharks are born at 290–320 mm after a gestation period of 11 to 12 months. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
Topological and histological analyses of Mabuya mabouya embryos at different developmental stages showed an extraembryonic membrane sequence as follows: a bilaminar omphalopleure and progressive mesodermal expansion around the whole yolk sac at gastrula stages; mesodermal split and formation of an exocoelom in the entire embryonic chamber at neurula stages; beginning of the expansion of the allantois into the exocoelom to form a chorioallantoic membrane at pharyngula stages; complete extension of the allantois into the exocoelom between limb-bud to preparturition stages. Thus, a placental sequence could be enumerated: bilaminar yolk sac placenta; chorioplacenta; allantoplacenta. All placentas are highly specialized for nutrient absorption from early developmental stages. The bistratified extraembryonic ectoderm possesses an external layer with cuboidal cells and a microvillar surface around the whole yolk sac, which absorbs uterine secretions during development of the bilaminar yolk sac placenta and chorioplacenta. During gastrulation, with mesodermal expansion a dorsal absorptive plaque forms above the embryo and several smaller absorptive plaques develop antimesometrially. Both structures are similar histologically and are active in histotrophic transfer from gastrula stages until the end of development. The dorsal absorptive plaque will constitute the placentome and paraplacentome during allantoplacental development. At late gastrula-early neurula stages some absorptive plaques form chorionic concavities or chorionic bags that are penetrated by a long uterine fold and seem to have a specialized histotrophic and/or metabolic role. The extraembryonic mesoderm does not ingress into the yolk sac and neither an isolated yolk mass nor a yolk cleft are formed. This derived pattern of development may be related to the drastic reduction of the egg size and obligatory placentotrophy from early developmental stages. Our results show new specialized placentotrophic structures and a novel arrangement of extraembryonic membrane morphogenesis for Squamata.  相似文献   

8.
Proteoglycans (PGs) were isolated from yolk sac tumor and chondroitin sulfate large PG (core molecule with a molecular weight congruent to 200,000) and small PG (core molecule with a molecular weight congruent to 50,000) were detected. Immunohistochemical localization of PGs in three yolk sac tumors was investigated using monoclonal antibodies raised against both small and large PGs, which were purified from human ovarian fibroma capsule and a yolk sac tumor, respectively. The localization of large PG was observed to be distinct from that of small PG. A markedly positive reaction for antibody against large PG was observed in myxomatous areas, perivascular and perivesicular portions; hyaline globules were the most intensely reactive. In the areas showing a polyvesicular vitelline tumor pattern, the compact connective tissue stroma consisted of small PGs. It is conceivable that large PGs are synthesized by immature mesenchymal cells and also by epithelial-like cells as a basement membrane component, whereas small PGs are synthesized by mature fibroblastic cells synthesizing collagen. Immunohistochemical localization of other extracellular matrix components (laminin, fibronectin, type I-IV collagen) was also studied in relation to PG localization.  相似文献   

9.
Ultrastructure of the pre-implantation shark yolk sac placenta   总被引:1,自引:0,他引:1  
During ontogeny, the yolk sac of viviparous sharks differentiates into a yolk sac placenta which functions in gas exchange and hematrophic nutrient transport. The pre-implantation yolk sac functions in respiration and yolk absorption. In a 10.0 cm embryo, the yolk sac consists of six layers, viz. (1) somatic ectoderm; (2) somatic mesoderm; (3) extraembryonic coelom; (4) capillaries; (5) endoderm; and (6) yolk syncytium. The epithelial ectoderm is a simple cuboidal epithelium possessing the normal complement of cytoplasmic organelles. The endoplasmic cisternae are dilated and vesicular. The epithelium rests upon a basal lamina below which is a collagenous stroma that contains dense bodies of varying diameter. They have a dense marginal zone, a less dense core, and a dense center. The squamous mesoderm has many pinocytotic caveolae. The capillary endothelium is adjacent to the mesoderm and is delimited by a basal lamina. The endoderm contains yolk degradation vesicles whose contents range from pale to dense. The yolk syncytium contains many morphologically diverse yolk granules in all phases of degradation. Concentric membrane lamellae form around yolk bodies as the main yolk granules begin to be degraded. During degradation, yolk platelets exhibit a vesicular configuration.  相似文献   

10.
The normal ventral and dorsal prostatic lobes of the young adult Syrian hamster were examined at the light and electron microscopic levels. Each lobe is composed of branched tubular secretory units separated from each other by loose interacinar connective tissue and draining into the urethra. The lumen of each acinus is lined by a simple epithelium composed of columnar secretory cells with occasional small basal cells. The epithelial layer, with the thin underlying lamina propria, forms a mucosa that is often highly folded. The whole acinus is bounded by a thick muscular stroma. In each of the ventral lobes, there are three main ducts, each one formed of tubular branched tributary secretory units. The walls of the secretory acini are moderately folded. Microvilli dominate the lumenal surface of the secretory epithelial cells. The Golgi complex is very extensive and shows dilated cisternae and secretory vesicles and vacuoles of various sizes. Membrane-bounded secretory granules populate the Golgi and apical areas and are released into the acinar lumen by exocytosis. The rough endoplasmic reticulum is dispersed throughout the cytoplasm, except in the region of the Golgi apparatus. In each of the dorsal lobes, there are several main tubular ducts that open into the urethra. Both proximal (ductal) and distal portions of the glandular tree are secretory in nature. Microvilli and cytoplasmic bulges and blebs dominate the lumenal surface of the secretory cells. The cells are also characterized by highly dilated cisternae of rough endoplasmic reticulum. The secretory cells show heterogeneity in the degree of dilation and distribution of rough endoplasmic reticulum, and this heterogeneity may reflect location in the glandular tree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Reflections on the Evolution of Piscine Viviparity   总被引:1,自引:0,他引:1  
Viviparity first makes its evolutionary appearance within thecraniate-vertebrate line among fishes. We estimate that it hasindependently evolved at least 42 times in five of the ninemajor groups of fishes. Viviparity is the dominant mode of reproductionamong the cartilaginous sharks and rays, i.e., 55% of approximately900 living species. It is less prevalent among the five majorgroups of bony fishes, i.e., 2–3% of an estimated 20,000or more species. The evolution of viviparity from oviparityinvolves: 1) a shift from external to internal fertilization;2) retention of embryos in the female reproductive system; 3)utilization of the ovaryor oviduct as sites of gestation; 4)structural and functional modification of the embryo and thefemale reproductive system and; 5) modification of extant endocrinemechanisms controlling reproduction. Viviparity offers selectiveadvantages to parents and offspring, such as: 1) enhanced survivalof offspring; 2) compensation for low fecundity; 3) amplificationof reproductive niches to reduce competition; 4) exploitationof pelagic niches; 5) colonization of new habitats; and 6) increasedenergetic efficiency in viviparous matrotrophes. Its principaldisadvantages include: 1) reduced fecundity; 2) cost to thefemale; and 3) risk of brood loss through maternal death. Acquisitionof viviparityestablishes new maternal-embryonic relationships,namely: 1) trophic; 2) osmoregulatory and excretory; 3) respiratory;4) endocrinological; and 5) immunological. In sharks, rays,and the coelacanth, gestation takes place in the oviduct, butin teleosts gestation occurs either in the ovarian follicleor ovarian lumen. The cystovarian teleostean ovary is hypothesizedto function both as ovary and oviduct. Oviductal, ovarian lumenal,andfollicular epithelial cells are the maternal sites of metabolicexchange. Metabolic exchange inembryos takes place across theepithelia of the general body surface and its derivatives oracross the gut epithelium and its derivatives. Four patternsof piscine placentation have evolved,namely: 1) yolk sac; 2)follicular; 3) branchial; and 4) trophotaenial placentae. Thepericardial amniochorion, the embryonic portion of the follicularplacenta, occurs in poeciliids and several other teleosteangroups. Developmental, it is nearly identical to the anterioraminochorionic fold of tetrapod vertebrates. Trophotaeniae areexternal rosette or ribbon-like structuresthat have evolvedin four orders of teleosts by heterochrony, i.e., acceleratedoutgrowth and differentiation of the embryonic hind gut. Withthe possible exception of the coelacanth, theyolk sac placentaoccurs only in sharks. We estimate that it has independentlyevolved between 11 and 20 times. It displays considerable diversity.Evolution of the yolk sac placenta entails retention of theyolk sac and secondary differentiation of its distal portionfor implantation and maternal tissue-embryonic tissue metabolicexchange and its proximal portion for oviductal fluid-embryonictissue exchange. The yolk stalk lengthens, is modified intoan umbilical stalk, and establishes a site of autotomy at theembryo-umbilical stalk junction. The lumenal wall of the oviductbecomes competent to function as a site of implantation.  相似文献   

12.
The left ovary of the bonnethead shark, Sphyrna tiburo, is rudimentary, and the right ovary supplies both oviducts which share a common ostium situated in the falciform ligament. Preceding ovulation the nidamental gland of each oviduct hypertrophies and the caudal two-thirds of each oviduct is modified to form a uterus. In the Florida-Caribbean area Sphyrna tiburo probably mates in March and 3–7 eggs are fertilized in the vicinity of the nidamental gland of each oviduct. The developing embryo is nourished during the first 3–4 months of gestation by yolk stored in its extensive yolk sac. Approximately three and one-half months after fertilization, the distal portion of the yolk sac becomes convoluted and interdigitates with deep folds in the uterine wall to form a yolk-sac placenta. As the placenta develops, the maternal uterine epithelium is reduced from columnar cells to squamous cells, and the foetal yolk-sac epithelium is reduced from columnar and cuboidal cells to squamous cells. Exchange between the maternal and foetal blood systems takes place through maternal endothelium, reduced maternal epithelium, egg-case membrane, reduced foetal epithelium, and foetal endothelium.  相似文献   

13.
The shark Iago omanensis (Triakidae, Selachia) is encountered in large populations in the Gulf of Aqaba, Red Sea, at depths of 150–1,500 m. It is a placental viviparous species, reproductive all year round and giving birth to four (occasionally five) young of 170- to 180-mm total length (TL). Its distribution and morphometrics, as well as histological and cytological changes in the oviducts, were studied. The ratio of weight of the female genital organs to body weight changes from 0.7% in nongravid females to 19.8% in the final stages of pregnancy. The ripe, liberated eggs, which are 11–12 mm long and 5 mm wide, pass through the nidamental gland and settle in the uterus. The embryo attains 9- to 11-mm TL and settles on a protruding ridge of the submucosa, covered with a microvillar endometrium. At this site of attachment, a placenta is formed and the participating uterine endometrium and wall of the yolk sac undergo profound histocytological changes, forming two parts of this organ. Three forms of food provisioning occur in the growing embryos: (1) lecithotrophic, based on yolk transported from the egg to the embryonic gut via the umbilical cord; (2) mixed food provision, during which, in addition to nourishment provided via the umbilicus, food is transported across the placenta through transfer from the female blood vascular system to the embryonic yolk sac via the trophic villi of the yolk sac; and (3) histotrophic, when all yolk reserves have been used and nutrition is provided from the so-called “milk” within the yolk sac, metabolized by the trophic structures of the sac and transported by blood vessels. Despite the gradual utilization of yolk, the yolk sac mass initially increases from 0.5–1.0 cc to 2.0–2.2 cc with the addition of primary and secondary trophic villi until, during the final stages of embryogenesis, it decreases again to 1.4–1.6 cc. Neonate juveniles are 35–40 times heavier than the original eggs. J. Morphol. 236:151–165, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to describe the complete ontogeny of simple placentation and the development of both the yolk sac placentae and chorioallantoic placentae from nonreproductive through postparturition phases in the maternal uterine epithelium of the Australian skink, Eulamprus tympanum. We chose E. tympanum, a species with a simple, noninvasive placenta, and which we know, has little net nutrient uptake during gestation to develop hypotheses about placental function and to identify any difference between the oviparous and viviparous conditions. Placental differentiation into the chorioallantoic placenta and yolk sac placenta occurs from embryonic Stage 29; both placentae are simple structures without specialized features for materno/fetal connection. The uterine epithelial cells are not squamous as previously described by Claire Weekes, but are columnar, becoming increasingly attenuated because of the pressure of the impinging underlying capillaries as gestation progresses. When the females are nonreproductive, the luminal uterine surface is flat and the microvillous cells that contain electron-dense vesicles partly obscure the ciliated cells. As vitellogenesis progresses, the microvillous cells are less hypertrophied than in nonreproductive females. After ovulation and fertilization, there is no regional differentiation of the uterine epithelium around the circumference of the egg. The first differentiation, associated with the chorioallantoic placentae and yolk sac placentae, occurs at embryonic Stage 29 and continues through to Stage 39. As gestation proceeds, the uterine chorioallantoic placenta forms ridges, the microvillous cells become less hypertrophied, ciliated cells are less abundant, the underlying blood vessels increase in size, and the gland openings at the uterine surface are more apparent. In contrast, the yolk sac placenta has no particular folding with cells having a random orientation and where the microvillous cells remain hypertrophied throughout gestation. However, the ciliated cells become less abundant as gestation proceeds, as also seen in the chorioallantoic placenta. Secretory vesicles are visible in the uterine lumen. All placental differentiation and cell detail is lost at Stage 40, and the uterine structure has returned to the nonreproductive condition within 2 weeks. Circulating progesterone concentrations begin to rise during late vitellogenesis, peak at embryonic Stages 28-30, and decline after Stage 35 in the later stages of gestation. The coincidence between the time of oviposition and placental differentiation demonstrates a similarity during gestation in the uterus between oviparous and simple placental viviparous squamates.  相似文献   

15.
Paraffin sections of an ontogenetic series of embryos of the viviparous lizard Gerrhonotus coeruleus and the oviparous congener G. multicarinatus reveal that although general features of the development of the chorioallantoic and yolk sac membranes are similar, differences are evident in the distribution of the chorioallantoic membrane in late stage embryos. An acellular shell membrane surrounds the egg throughout gestation in both species although the thickness of this structure is much reduced in G. coeruleus over that of G. multicarinatus. The initial vascular membrane to contact the shell membrane in both species is a trilaminar omphalopleure (choriovitelline membrane) composed of ectoderm, mesoderm of the area vasculosa, and endoderm. This transitory membrane is replaced by the vascularized chorioallantois as the allantois expands to contact the inner surface of the chorion. Prior to the establishment of the chorioallantois at the embryonic pole, a membrane begins to form within the yolk ventral to the sinus terminalis. This membrane, which becomes vascularized, extends across the entire width of the abembryonic region and isolates a mass of yolk ventral to the yolk mass proper. The outer membrane of the yolk pole is a nonvascular bilaminar omphalopleure (chorionic ectoderm and yolk endoderm). In G. multicarinatus the bilaminar omphalopleure is supported internally by the vascularized allantoic membrane, whereas in G. coeruleus the allantois does not extend beyond the margin of the isolated yolk mass and the bilaminar omphalopleure is supported by the vascularized intravitelline membrane. Both the chorioallantoic placenta (uterine epithelium, chorionic ectoderm and mesoderm, and allantoic mesoderm and endoderm) and the yolk sac placenta at the abembryonic pole (uterine epithelium, chorionic ectoderm, and yolk sac endoderm) persist to the end of gestation in G. coeruleus.  相似文献   

16.
Pregnant CD-1 mice were injected with diethylstilboestrol (10 micrograms/kg body weight) in 0.1 ml maize oil, or maize oil alone, on Day 16 of gestation. Six experimental and 6 control female progeny were killed daily from birth until Day 7 and uterine tissues were examined by light microscopy. In-utero exposure to diethylstilboestrol resulted in hypertrophy of luminal epithelial cells and premature formation of uterine glands. The initial sign of uterine gland formation was invagination of the uterine surface epithelial cell layer into the underlying connective tissue stroma. A temporal difference occurred between control animals and those exposed to diethylstilboestrol: uterine gland formation first occurred in experimental progeny on Day 4, but not until Day 5 in control progeny. Uterine glands which extended deep into the connective tissue stroma to the myometrium were present in diethylstilboestrol-treated progeny by Day 7, but remained in the superficial endometrial connective tissue stroma in control animals. The results indicate that prenatal exposure of mice to diethylstilboestrol causes uterine epithelial cell hypertrophy at birth and the premature formation of uterine glands during the first week of neonatal uterine development.  相似文献   

17.
Lipid class analysis was carried out on developing eggs, eleuthero-embryos (yolk sac larvae) and starving larvae of the freshwater species Clarias gariepinus , using thin layer chromatography. Samples were taken at fixed intervals from a large pool of fertilized eggs obtained through induced reproduction of several parent fish. The total lipid content of fertilized eggs fluctuated around 22% of the dry weight and decreased from 21% at hatching to about 12–5% at yolk absorption. In starving larvae, the amount of total lipid per individual remained relatively constant. Polar lipids [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)] together accounted for 73·6 to 80% of total lipid. PC was by far the most abundant lipid class during the entire experimental period (70–75% of total lipid). PC was catabolized proportionally to total lipid, demonstrating its role as the main energy supplier. All yolk PE was converted to body tissue. The neutral Hpids consisted of triglycerides (TAG), cholesterol and cholesteryl esters (respectively 12·5, 10 and 3% of total lipid in newly fertilized eggs). All TAG were depleted before complete yolk absorption.  相似文献   

18.
Uterine events during pregnancy were examined histologically in laboratory-bred black mastiff bats (Molossus ater) as part of an effort to develop this species as a model for studies of the factors controlling trophoblastic growth. Embryos entered the uterus at the morula stage and in most cases shed their zonae pellucidae reasonably intact, apparently as blastocyst expansion occurred. Implantation was superficial and observed to occur only in the right uterine horn. During implantation to the endometrium by both blastocyst expansion and closure of the uterine lumen. A decidual reaction was evident at an early stage of uterine epithelial displacement and spread rapidly through the endometrium. Initial trophoblastic proliferation occurred along the uterine lumen and into the glands, while its invasion of the endometrial stroma was delayed. Although one or several primordial cavities have been observed to develop within the epiblast during implantation, these subsequently opened to a trophoepiblastic cavity, and the definitive amnion was formed by folding. A choriovitelline placenta was present briefly at thesomite stage, but disappeared as the exocoelom enlarged and the yolk sac collapsed. The latter persisted through pregnancy, however, as a glandular-appearing body. As the yolk sac retracted from the chorion, it was replaced by allantoic mesoderm, creating a diffuse labyrinthine endotheliodichorial placenta. This was prominent during mid-gestation, but was supplanted by the discoidal hemochorial placenta as the major site of feto-maternal exchange during late pregnancy.  相似文献   

19.
In the viviparous lizard Trachylepis ivensi (Scincidae) of central Africa, reproducing females ovulate tiny ~1 mm eggs and supply the nutrients for development by placental means. Histological study shows that this species has evolved an extraordinary placental pattern long thought to be confined to mammals, in which fetal tissues invade the uterine lining to contact maternal blood vessels. The vestigial shell membrane disappears very early in development, allowing the egg to absorb uterine secretions. The yolk is enveloped precocially by the trilaminar yolk sac and no isolated yolk mass or yolk cleft develops. Early placentas are formed from the chorion and choriovitelline membranes during the neurula through pharyngula stages. During implantation, cells of the chorionic ectoderm penetrate between uterine epithelial cells. The penetrating tissue undergoes hypertrophy and hyperplasia, giving rise to sheets of epithelial tissue that invade beneath the uterine epithelium, stripping it away. As a result, fetal epithelium entirely replaces the uterine epithelium, and lies in direct contact with maternal capillaries and connective tissue. Placentation is endotheliochorial and fundamentally different from that of all other viviparous reptiles known. Further, the pattern of fetal membrane development (with successive loss and re‐establishment of an extensive choriovitelline membrane) is unique among vertebrates. T. ivensi represents a new extreme in placental specializations of reptiles, and is the most striking case of convergence on the developmental features of viviparous mammals known. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号