首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.  相似文献   

2.
One of the fundamental problems of cell biology is the understanding of complex regulatory networks. Such networks are ubiquitous in cells and knowledge of their properties is essential for the understanding of cellular behavior. In earlier work (Kholodenko et al. (PNAS 99: 12841), it was shown how the structure of biological networks can be quantified from experimental measurements of steady-state concentrations of key intermediates as a result of perturbations using a simple algorithm called "unravelling". Here, we study the effect of experimental uncertainty on the accuracy of the inferred structure (i.e. whether interactions are excitatory or inhibitory) of the networks determined using the unravelling algorithm. We show that the accuracy of the network structure depends not only on the noise level but on the strength of the interactions within the network. In particular, both very small and very large values of the connection strengths lead to large uncertainty in the inferred network. We describe a powerful geometric tool for the intuitive understanding of the effect of experimental error on the qualitative accuracy of the inferred network. In addition, we show that the use of additional data beyond that needed to minimally constrain the network not only improves the accuracy of the inferred network, but also may allow the detection of situations in which the initial assumptions of unravelling with respect to the network and the perturbations have been violated. Our ideas are illustrated using the mitogen-activated protein kinase (MAPK) signaling network as an example.  相似文献   

3.
Advances in the field of bioinformatics have led to reconstruction of genome-scale networks for a number of key organisms. The application of physicochemical constraints to these stoichiometric networks allows researchers, through methods such as flux balance analysis, to highlight key sets of reactions necessary to achieve particular objectives. The key benefits of constraint-based analysis lie in the minimal knowledge required to infer systemic properties. However, network degeneracy leads to a large number of flux distributions that satisfy any objective; moreover, these distributions may be dominated by biologically irrelevant internal cycles. By examining the geometry underlying the problem, we define two methods for finding a unique solution within the space of all possible flux distributions; such a solution contains no internal cycles, and is representative of the space as a whole. The first method draws on typical geometric knowledge, but cannot be applied to large networks because of the high computational complexity of the problem. Thus a second method, an iteration of linear programs which scales easily to the genome scale, is defined. The algorithm is run on four recent genome-scale models, and unique flux solutions are found. The algorithm set out here will allow researchers in flux balance analysis to exchange typical solutions to their models in a reproducible format. Moreover, having found a single solution, statistical analyses such as correlations may be performed.  相似文献   

4.
5.
Optimal health is maintained by interaction of multiple intrinsic and environmental factors at different levels of complexity—from molecular, to physiological, to social. Understanding and quantification of these interactions will aid design of successful health interventions. We introduce the reference network concept as a platform for multi-level exploration of biological relations relevant for metabolic health, by integration and mining of biological interactions derived from public resources and context-specific experimental data. A White Adipose Tissue Health Reference Network (WATRefNet) was constructed as a resource for discovery and prioritization of mechanism-based biomarkers for white adipose tissue (WAT) health status and the effect of food and drug compounds on WAT health status. The WATRefNet (6,797 nodes and 32,171 edges) is based on (1) experimental data obtained from 10 studies addressing different adiposity states, (2) seven public knowledge bases of molecular interactions, (3) expert’s definitions of five physiologically relevant processes key to WAT health, namely WAT expandability, Oxidative capacity, Metabolic state, Oxidative stress and Tissue inflammation, and (4) a collection of relevant biomarkers of these processes identified by BIOCLAIMS (http://bioclaims.uib.es). The WATRefNet comprehends multiple layers of biological complexity as it contains various types of nodes and edges that represent different biological levels and interactions. We have validated the reference network by showing overrepresentation with anti-obesity drug targets, pathology-associated genes and differentially expressed genes from an external disease model dataset. The resulting network has been used to extract subnetworks specific to the above-mentioned expert-defined physiological processes. Each of these process-specific signatures represents a mechanistically supported composite biomarker for assessing and quantifying the effect of interventions on a physiological aspect that determines WAT health status. Following this principle, five anti-diabetic drug interventions and one diet intervention were scored for the match of their expression signature to the five biomarker signatures derived from the WATRefNet. This confirmed previous observations of successful intervention by dietary lifestyle and revealed WAT-specific effects of drug interventions. The WATRefNet represents a sustainable knowledge resource for extraction of relevant relationships such as mechanisms of action, nutrient intervention targets and biomarkers and for assessment of health effects for support of health claims made on food products.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0439-x) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.

Background

Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of ‘omics’ data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis.

Results

We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions.

Conclusions

Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0386-y) contains supplementary material, which is available to authorized users.  相似文献   

8.
We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.  相似文献   

9.
10.
Parameter estimation in dynamic systems finds applications in various disciplines, including system biology. The well-known expectation-maximization (EM) algorithm is a popular method and has been widely used to solve system identification and parameter estimation problems. However, the conventional EM algorithm cannot exploit the sparsity. On the other hand, in gene regulatory network inference problems, the parameters to be estimated often exhibit sparse structure. In this paper, a regularized expectation-maximization (rEM) algorithm for sparse parameter estimation in nonlinear dynamic systems is proposed that is based on the maximum a posteriori (MAP) estimation and can incorporate the sparse prior. The expectation step involves the forward Gaussian approximation filtering and the backward Gaussian approximation smoothing. The maximization step employs a re-weighted iterative thresholding method. The proposed algorithm is then applied to gene regulatory network inference. Results based on both synthetic and real data show the effectiveness of the proposed algorithm.  相似文献   

11.
12.
Proteomics is very much a technology-driven field. The ambition is to identify, quantify and to assess the state of posttranslational modification and interaction partners for every protein in the cell. The proteome is in a state of flux and is thus extremely complex. Analysis of the proteome is exacerbated by the huge dynamic concentration range of proteins in the cellular environment. The impact that mass spectrometry-based proteomics has had on the field of biology has heavily depended on dramatic improvements in mass spectrometry that have been made in recent years. We examined 1541 reports indexed in PubMed relating to proteomics and reproduction to identify trends in the field and to make some broad observations for future work. To set the scene, in the first part of the report, we give a comprehensive overview of proteomics and associated techniques and technologies (such as separations and mass spectrometry). The second part examines the field in light of these techniques and suggests some opportunities for application of these tools in the area of reproduction.  相似文献   

13.

Introduction

There have been great advances in the examination and characterization of intracellular signaling and synthetic pathways. However, these pathways are generally represented using static diagrams when in reality they exist with considerable dynamic complexity. In addition to the expansion of existing mathematical pathway representation tools (many utilizing systems biology markup language format), there is a growing recognition that spatially explicit modeling methods may be necessary to capture essential aspects of intracellular dynamics. This paper introduces spatially configured stochastic reaction chambers (SCSRC), an agent-based modeling (ABM) framework that incorporates an abstracted molecular ‘event’ rule system with a spatially explicit representation of the relationship between signaling and synthetic compounds. Presented herein is an example of the SCSRC as applied to Toll-like receptor (TLR) 4 signaling and the inflammatory response.

Methods

The underlying rationale for the architecture of the SCSRC is described. A SCSRC model of TLR-4 signaling was developed after a review of the literature regarding TLR-4 signaling and downstream synthetic events. The TLR-4 SCSRC was implemented in the free-ware software platform, Netlogo. A series of in silico experiments were performed to evaluate the response of the TLR-4 SCSRC with respect to response to simulated administration of lipopolysaccharide (LPS). The pro-inflammatory response was represented by simulated secretion of tumor necrosis factor (TNF). Subsequent in silico experiments examined the response to of the TLR-4 SCSRC in terms of a simulated preconditioning effect represented as tolerance of pro-inflammatory signaling to a second dose of LPS.

Results

The SCSRC produces simulated dynamics of TLR-4 signaling in response to LPS stimulation that are qualitatively similar to that reported in the literature. The expression of various components of the signaling cascade demonstrated stochastic noise, consistent with molecular expression data reported in the literature. There is a dose dependent pro-inflammatory response effect seen with increasing initial doses of LPS, and there was also a dose dependent response with respect to preconditioning effect and the establishment of tolerance. Both of these dynamics are consistent with published responses to LPS.

Conclusions

The particle-based, spatially oriented SCSRC model of TLR-4 signaling captures the essential dynamics of the TLR-4 signal transduction cascade, including stochastic signal behavior, dose dependent response, negative feedback control, and preconditioning effect. This is accomplished even given a high degree of molecular event abstraction. The component detail of the SCSRC may allow for sequential parsing of various preconditioning effects, something not possible without computational modeling and simulation, and may give insight into the expected consequences and responses resulting from manipulation of one or many of these modulating factors. The SCSRC is admittedly a work in evolution, and future work will sequentially incorporate additional regulatory mechanisms, both intracellular and paracrine/autocrine, and improved mapping between the spatial chamber configuration and molecular event rules, and experimentally define biochemical reaction rate constants. However, the SCSRC has promise as a highly modular and flexible modeling method that is suited to the dynamic knowledge representation of intracellular processes.  相似文献   

14.
The cholesterol biosynthesis pathway has recently been shown to play an important role in the innate immune response to viral infection with host protection occurring through a coordinate down regulation of the enzymes catalysing each metabolic step. In contrast, statin based drugs, which form the principle pharmaceutical agents for decreasing the activity of this pathway, target a single enzyme. Here, we build an ordinary differential equation model of the cholesterol biosynthesis pathway in order to investigate how the two regulatory strategies impact upon the behaviour of the pathway. We employ a modest set of assumptions: that the pathway operates away from saturation, that each metabolite is involved in multiple cellular interactions and that mRNA levels reflect enzyme concentrations. Using data taken from primary bone marrow derived macrophage cells infected with murine cytomegalovirus or treated with IFNγ, we show that, under these assumptions, coordinate down-regulation of enzyme activity imparts a graduated reduction in flux along the pathway. In contrast, modelling a statin-like treatment that achieves the same degree of down-regulation in cholesterol production, we show that this delivers a step change in flux along the pathway. The graduated reduction mediated by physiological coordinate regulation of multiple enzymes supports a mechanism that allows a greater level of specificity, altering cholesterol levels with less impact upon interactions branching from the pathway, than pharmacological step reductions. We argue that coordinate regulation is likely to show a long-term evolutionary advantage over single enzyme regulation. Finally, the results from our models have implications for future pharmaceutical therapies intended to target cholesterol production with greater specificity and fewer off target effects, suggesting that this can be achieved by mimicking the coordinated down-regulation observed in immunological responses.  相似文献   

15.
Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model‐based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model‐based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1247–1261, 2014  相似文献   

16.
17.
18.
A gene regulatory network subcircuit comprising the otx, wnt8, and blimp1 genes accounts for a moving torus of gene expression that sweeps concentrically across the vegetal domain of the sea urchin embryo. Here we confirm by mutation the inputs into the blimp1cis-regulatory module predicted by network analysis. Its essential design feature is that it includes both activation and autorepression sites. The wnt8 gene is functionally linked into the subcircuit in that cells receiving this ligand generate a β-catenin/Tcf input required for blimp1 expression, while the wnt8 gene in turn requires a Blimp1 input. Their torus-like spatial expression patterns and gene regulatory analysis indicate that the genes even-skipped and hox11/13b are also entrained by this subcircuit. We verify the cis-regulatory inputs of even-skipped predicted by network analysis. These include activation by β-catenin/Tcf and Blimp1, repression within the torus by Hox11/13b, and repression outside the torus by Tcf in the absence of Wnt8 signal input. Thus even-skipped and hox11/13b, along with blimp1 and wnt8, are members of a cohort of torus genes with similar regulatory inputs and similar, though slightly out-of-phase, expression patterns, which reflect differences in cis-regulatory design.  相似文献   

19.
Plant carbohydrate metabolism comprises numerous metabolite interconversions, some of which form cycles of metabolite degradation and re-synthesis and are thus referred to as futile cycles. In this study, we present a systems biology approach to analyse any possible regulatory principle that operates such futile cycles based on experimental data for sucrose (Scr) cycling in photosynthetically active leaves of the model plant Arabidopsis thaliana. Kinetic parameters of enzymatic steps in Scr cycling were identified by fitting model simulations to experimental data. A statistical analysis of the kinetic parameters and calculated flux rates allowed for estimation of the variability and supported the predictability of the model. A principal component analysis of the parameter results revealed the identifiability of the model parameters. We investigated the stability properties of Scr cycling and found that feedback inhibition of enzymes catalysing metabolite interconversions at different steps of the cycle have differential influence on stability. Applying this observation to futile cycling of Scr in leaf cells points to the enzyme hexokinase as an important regulator, while the step of Scr degradation by invertases appears subordinate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号