共查询到20条相似文献,搜索用时 9 毫秒
1.
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies. 相似文献
2.
One of the fundamental problems of cell biology is the understanding of complex regulatory networks. Such networks are ubiquitous in cells and knowledge of their properties is essential for the understanding of cellular behavior. In earlier work (Kholodenko et al. (PNAS 99: 12841), it was shown how the structure of biological networks can be quantified from experimental measurements of steady-state concentrations of key intermediates as a result of perturbations using a simple algorithm called "unravelling". Here, we study the effect of experimental uncertainty on the accuracy of the inferred structure (i.e. whether interactions are excitatory or inhibitory) of the networks determined using the unravelling algorithm. We show that the accuracy of the network structure depends not only on the noise level but on the strength of the interactions within the network. In particular, both very small and very large values of the connection strengths lead to large uncertainty in the inferred network. We describe a powerful geometric tool for the intuitive understanding of the effect of experimental error on the qualitative accuracy of the inferred network. In addition, we show that the use of additional data beyond that needed to minimally constrain the network not only improves the accuracy of the inferred network, but also may allow the detection of situations in which the initial assumptions of unravelling with respect to the network and the perturbations have been violated. Our ideas are illustrated using the mitogen-activated protein kinase (MAPK) signaling network as an example. 相似文献
3.
4.
Advances in the field of bioinformatics have led to reconstruction of genome-scale networks for a number of key organisms. The application of physicochemical constraints to these stoichiometric networks allows researchers, through methods such as flux balance analysis, to highlight key sets of reactions necessary to achieve particular objectives. The key benefits of constraint-based analysis lie in the minimal knowledge required to infer systemic properties. However, network degeneracy leads to a large number of flux distributions that satisfy any objective; moreover, these distributions may be dominated by biologically irrelevant internal cycles. By examining the geometry underlying the problem, we define two methods for finding a unique solution within the space of all possible flux distributions; such a solution contains no internal cycles, and is representative of the space as a whole. The first method draws on typical geometric knowledge, but cannot be applied to large networks because of the high computational complexity of the problem. Thus a second method, an iteration of linear programs which scales easily to the genome scale, is defined. The algorithm is run on four recent genome-scale models, and unique flux solutions are found. The algorithm set out here will allow researchers in flux balance analysis to exchange typical solutions to their models in a reproducible format. Moreover, having found a single solution, statistical analyses such as correlations may be performed. 相似文献
5.
6.
White adipose tissue reference network: a knowledge resource for exploring health-relevant relations
Thomas Kelder Georg Summer Martien Caspers Evert M. van Schothorst Jaap Keijer Loes Duivenvoorde Susanne Klaus Anja Voigt Laura Bohnert Catalina Pico Andreu Palou M. Luisa Bonet Aldona Dembinska-Kiec Malgorzata Malczewska-Malec Beata Kie?-Wilk Josep M. del Bas Antoni Caimari Lluis Arola Marjan van Erk Ben van Ommen Marijana Radonjic 《Genes & nutrition》2015,10(1)
Optimal health is maintained by interaction of multiple intrinsic and environmental factors at different levels of complexity—from molecular, to physiological, to social. Understanding and quantification of these interactions will aid design of successful health interventions. We introduce the reference network concept as a platform for multi-level exploration of biological relations relevant for metabolic health, by integration and mining of biological interactions derived from public resources and context-specific experimental data. A White Adipose Tissue Health Reference Network (WATRefNet) was constructed as a resource for discovery and prioritization of mechanism-based biomarkers for white adipose tissue (WAT) health status and the effect of food and drug compounds on WAT health status. The WATRefNet (6,797 nodes and 32,171 edges) is based on (1) experimental data obtained from 10 studies addressing different adiposity states, (2) seven public knowledge bases of molecular interactions, (3) expert’s definitions of five physiologically relevant processes key to WAT health, namely WAT expandability, Oxidative capacity, Metabolic state, Oxidative stress and Tissue inflammation, and (4) a collection of relevant biomarkers of these processes identified by BIOCLAIMS (http://bioclaims.uib.es). The WATRefNet comprehends multiple layers of biological complexity as it contains various types of nodes and edges that represent different biological levels and interactions. We have validated the reference network by showing overrepresentation with anti-obesity drug targets, pathology-associated genes and differentially expressed genes from an external disease model dataset. The resulting network has been used to extract subnetworks specific to the above-mentioned expert-defined physiological processes. Each of these process-specific signatures represents a mechanistically supported composite biomarker for assessing and quantifying the effect of interventions on a physiological aspect that determines WAT health status. Following this principle, five anti-diabetic drug interventions and one diet intervention were scored for the match of their expression signature to the five biomarker signatures derived from the WATRefNet. This confirmed previous observations of successful intervention by dietary lifestyle and revealed WAT-specific effects of drug interventions. The WATRefNet represents a sustainable knowledge resource for extraction of relevant relationships such as mechanisms of action, nutrient intervention targets and biomarkers and for assessment of health effects for support of health claims made on food products.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-014-0439-x) contains supplementary material, which is available to authorized users. 相似文献7.
8.
肝癌基因调控网络研究进展 总被引:1,自引:0,他引:1
肝癌(Hepatocellular carcinoma,HCC)是我国常见的恶性肿瘤之一。肝癌基因调控网络(HCC regulatory network,HCC GRN)是研究肝癌分子机制的重要途径之一,其节点包括肝癌相关的分子,如mi RNA、TF等,网络的边由节点间相互作用关系构成。基于不同类型的数据构建的肝癌基因调控网络其类型及特征各有不同。综合近年来肝癌基因调控网络研究发现,由TF与mi RNA构建的肝癌转录调控网络更能揭露肝癌关键基因,反映关键基因在调控网络中的扰动情况。整合基因变异信息与调控网络成为研究肝癌基因调控网络的趋势,但相应的研究几乎是空白的。本文从HCC GRN的数据来源、分类及特征,及各类型调控网络的近年研究情况等方面进行综述,并结合相关研究工作对肝癌基因调控网络研究现状进行分析与讨论,对前景进行展望,为这一领域研究工作提供参考。 相似文献
9.
10.
Aravind Venkatesan Sushil Tripathi Alejandro Sanz de Galdeano Ward Blondé Astrid L?greid Vladimir Mironov Martin Kuiper 《BMC bioinformatics》2014,15(1)
Background
Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of ‘omics’ data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis.Results
We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions.Conclusions
Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.Electronic supplementary material
The online version of this article (doi:10.1186/s12859-014-0386-y) contains supplementary material, which is available to authorized users. 相似文献11.
It has been suggested that a close relationship exists between gene essentiality and network centrality in protein–protein interaction networks. However, recent studies have reported somewhat conflicting results on this relationship. In this study, we investigated whether essential proteins could be inferred from network centrality alone. In addition, we determined which centrality measures describe the essentiality well. For this analysis, we devised new local centrality measures based on several well‐known centrality measures to more precisely describe the connection between network topology and essentiality. We examined two recent yeast protein–protein interaction networks using 40 different centrality measures. We discovered a close relationship between the path‐based localized information centrality and gene essentiality, which suggested underlying topological features that represent essentiality. We propose that two important features of the localized information centrality (proper representation of environmental complexity and the consideration of local sub‐networks) are the key factors that reveal essentiality. In addition, a random forest classifier showed reasonable performance at classifying essential proteins. Finally, the results of clustering analysis using centrality measures indicate that some network clusters are closely related with both particular biological processes and essentiality, suggesting that functionally related proteins tend to share similar network properties. 相似文献
12.
We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner. 相似文献
13.
Class‐paired Fuzzy SubNETs: A paired variant of the rank‐based network analysis family for feature selection based on protein complexes 下载免费PDF全文
Identifying reproducible yet relevant protein features in proteomics data is a major challenge. Analysis at the level of protein complexes can resolve this issue and we have developed a suite of feature‐selection methods collectively referred to as Rank‐Based Network Analysis (RBNA). RBNAs differ in their individual statistical test setup but are similar in the sense that they deploy rank‐defined weights among proteins per sample. This procedure is known as gene fuzzy scoring. Currently, no RBNA exists for paired‐sample scenarios where both control and test tissues originate from the same source (e.g. same patient). It is expected that paired tests, when used appropriately, are more powerful than approaches intended for unpaired samples. We report that the class‐paired RBNA, PPFSNET, dominates in both simulated and real data scenarios. Moreover, for the first time, we explicitly incorporate batch‐effect resistance as an additional evaluation criterion for feature‐selection approaches. Batch effects are class irrelevant variations arising from different handlers or processing times, and can obfuscate analysis. We demonstrate that PPFSNET and an earlier RBNA, PFSNET, are particularly resistant against batch effects, and only select features strongly correlated with class but not batch. 相似文献
14.
《遗传学报》2021,48(7):520-530
Genetic, epigenetic, and metabolic alterations are all hallmarks of cancer. However, the epigenome and metabolome are both highly complex and dynamic biological networks in vivo. The interplay between the epigenome and metabolome contributes to a biological system that is responsive to the tumor microenvironment and possesses a wealth of unknown biomarkers and targets of cancer therapy. From this perspective, we first review the state of high-throughput biological data acquisition(i.e. multiomics data)and analysis(i.e. computational tools) and then propose a conceptual in silico metabolic and epigenetic regulatory network(MER-Net) that is based on these current high-throughput methods. The conceptual MER-Net is aimed at linking metabolomic and epigenomic networks through observation of biological processes, omics data acquisition, analysis of network information, and integration with validated database knowledge. Thus, MER-Net could be used to reveal new potential biomarkers and therapeutic targets using deep learning models to integrate and analyze large multiomics networks. We propose that MER-Net can serve as a tool to guide integrated metabolomics and epigenomics research or can be modified to answer other complex biological and clinical questions using multiomics data. 相似文献
15.
16.
17.
Parameter estimation in dynamic systems finds applications in various disciplines, including system biology. The well-known expectation-maximization (EM) algorithm is a popular method and has been widely used to solve system identification and parameter estimation problems. However, the conventional EM algorithm cannot exploit the sparsity. On the other hand, in gene regulatory network inference problems, the parameters to be estimated often exhibit sparse structure. In this paper, a regularized expectation-maximization (rEM) algorithm for sparse parameter estimation in nonlinear dynamic systems is proposed that is based on the maximum a posteriori (MAP) estimation and can incorporate the sparse prior. The expectation step involves the forward Gaussian approximation filtering and the backward Gaussian approximation smoothing. The maximization step employs a re-weighted iterative thresholding method. The proposed algorithm is then applied to gene regulatory network inference. Results based on both synthetic and real data show the effectiveness of the proposed algorithm. 相似文献
18.
Proteomics is very much a technology-driven field. The ambition is to identify, quantify and to assess the state of posttranslational modification and interaction partners for every protein in the cell. The proteome is in a state of flux and is thus extremely complex. Analysis of the proteome is exacerbated by the huge dynamic concentration range of proteins in the cellular environment. The impact that mass spectrometry-based proteomics has had on the field of biology has heavily depended on dramatic improvements in mass spectrometry that have been made in recent years. We examined 1541 reports indexed in PubMed relating to proteomics and reproduction to identify trends in the field and to make some broad observations for future work. To set the scene, in the first part of the report, we give a comprehensive overview of proteomics and associated techniques and technologies (such as separations and mass spectrometry). The second part examines the field in light of these techniques and suggests some opportunities for application of these tools in the area of reproduction. 相似文献
19.
Jean-Sbastien Milanese Chabane Tibiche Naif Zaman Jinfeng Zou Pengyong Han Zhigang Meng Andre Nantel Arnaud Droit Edwin Wang 《基因组蛋白质组与生物信息学报(英文版)》2021,19(6):973-985
Continual reduction in sequencing cost is expanding the accessibility of genome sequencing data for routine clinical applications. However, the lack of methods to construct machine learning-based predictive models using these datasets has become a crucial bottleneck for the application of sequencing technology in clinics. Here, we develop a new algorithm, eTumorMetastasis, which transforms tumor functional mutations into network-based profiles and identifies network operational gene (NOG) signatures. NOG signatures model the tipping point at which a tumor cell shifts from a state that doesn’t favor recurrence to one that does. We show that NOG signatures derived from genomic mutations of tumor founding clones (i.e., the ‘most recent common ancestor’ of the cells within a tumor) significantly distinguish the recurred and non-recurred breast tumors as well as outperform the most popular genomic test (i.e., Oncotype DX). These results imply that mutations of the tumor founding clones are associated with tumor recurrence and can be used to predict clinical outcomes. As such, predictive tools could be used in clinics to guide treatment routes. Finally, the concepts underlying the eTumorMetastasis pave the way for the application of genome sequencing in predictions for other complex genetic diseases. eTumorMetastasis pseudocode and related data used in this study are available at https://github.com/WangEdwinLab/eTumorMetastasis. 相似文献
20.
Gabriel Krouk Jesse Lingeman Amy Marshall Colon Gloria Coruzzi Dennis Shasha 《Genome biology》2013,14(6):123
The goal of systems biology is to generate models for predicting how a system will react under untested conditions or in response to genetic perturbations. This paper discusses experimental and analytical approaches to deriving causal relationships in gene regulatory networks. 相似文献