首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the effects of exercise training on ventricular epicardial fat thickness in obese men and to investigate the relationship of the change in epicardial fat thickness to changes in abdominal fat tissue following exercise training. Twenty-four obese middle-aged men [age, 49.4 +/- 9.6 yr; weight, 87.7 +/- 11.2 kg; body mass index (BMI), 30.7 +/- 3.3 kg/m(2); peak oxygen consumption, 28.4 +/- 7.2 ml.kg(-1).min(-1); means +/- SD] participated in this study. Each participant completed a 12-wk supervised exercise training program (60-70% of the maximal heart rate; 60 min/day, 3 days/wk) and underwent a transthoracic echocardiography. The epicardial fat thickness on the free wall of the right ventricle was measured from both parasternal long- and short-axis views. The visceral adipose tissue (VAT) and subcutaneous adipose tissues were measured by computed tomography. Following exercise training, the epicardial fat thickness was significantly decreased (P < 0.001). The percentage change of epicardial fat thickness was twice as high compared with those of waist, BMI, and body weight of original values (P <0.05). There was a significant relationship (r = 0.525, P = 0.008) between changes in the epicardial fat thickness and VAT with exercise training. Stepwise multiple regression analysis revealed that the change in VAT, change in systolic blood pressure, and change in quantitative insulin sensitivity check index were independently related to the change epicardial fat thickness (P < 0.05). The ventricular epicardial fat thickness is reduced significantly after aerobic exercise training and is associated with a decrease in VAT. These results suggest that aerobic exercise training may be an effective nonpharmacological strategy for decreasing the ventricular epicardial fat thickness and visceral fat area in obese middle-aged men.  相似文献   

2.
Adaptation of the left ventricle to exercise-induced hypertrophy   总被引:1,自引:0,他引:1  
Cardiac functional and structural adaptations to exercise-induced hypertrophy were studied in 68 pigs. Pigs were exercise trained on a treadmill for 10 wk. Sequential measurements were made of cardiac dimensions, [left ventricular end-diastolic diameter (EDD), changes in diameter (delta D%), wall thickness (WTh), wall thickening (WTh%), left ventricular pressure (LVP), time derivative of pressure (dP/dt), stroke volume, total body O2 consumption (VO2), blood gases, and systemic hemodynamics] at rest and during moderate and severe exercise. Postmortem studies included morphometric measurements of capillary density, arteriolar density, mitochondria, and myofibrils. All of the exercise-trained pigs showed significant increases in aerobic capacity. Maximum O2 consumption (VO2 max) increased by 37.5% in group 1 (moderate exercise training) and 34% in group 3 (heavy exercise training). Cardiac hypertrophy ranged from less than 15% in a group (n = 8) subjected to moderate exercise training to greater than 30% in a group (n = 11) subjected to heavy exercise training. Before training, exercise was characterized by a decreasing EDD during progressive exercise; this was reversed after exercise training. Stroke volume and end-diastolic volumes during exercise showed a highly significant increase after exercise training and hypertrophy. Morphometric measurements showed that mitochondria and cell membranes increased with increasing myocyte growth in all exercise groups, but there was only a partially compensated adaptation of capillary proliferation. Arteriolar number and length increased in all exercise groups. Intrinsic contractility as measured by delta D%, WTh%, or left ventricular dP/dt did not increase with exercise training and in some instances decreased. Therefore, left ventricular adaptation to strenuous exercise in the pig heart is primarily one of changes in left ventricular dimensions and a compensated hypertrophy. Exercise-induced increases in EDD and stroke volume can be accounted for by decreases in peripheral resistance and increased cardiac dimensions.  相似文献   

3.
The purpose of this study was to investigate the changes of maximal oxygen consumption, left ventricular function and serum lipids after 36 weeks of aerobic exercise in elderly women without the influence of drugs. Eight elderly women were studied by M-mode and Doppler echocardiography to assess left ventricular size, mass and function. Maximal oxygen consumption (VO(2)max) was determined for each subject by administering a treadmill exercise test. The training intensity was decided by heart rate reserve. Subjects performed exercise for 40 minutes a day, 3 days a week at 50-60% of the heart rate reserve during the 36 weeks. Exercise capacity was assessed by VO(2)max with a graded exercise test of the treadmill. Weight and % body fat decreased after training. Cardiorespiratory function improved because of the increase in VO(2)max and VO(2)max normalized for body weight after training. Systolic blood pressure significantly decreased. There are no significant difference in all left ventricular's parameters (end-diastolic dimension, end-systolic dimension, end-diastolic volume, end-systolic volume, stroke volume, cardiac output, ejection fraction, fractional shortening) after 36 weeks. Exercise training did not induce left ventricular (LV) enlargement as evidence of an absence of increase in left ventricular end-diastolic volume. The total cholesterol level and triglyceride level decreased after training. High density lipoprotein-cholesterol significantly increased and low density lipoprotein-cholesterol significantly decreased, atherogenic index (AI) significantly decreased and apolipoprotein A-I increased and apolipoprotein B decreased after training. In conclusion, although there was no significant change in left ventricular function, aerobic training showed a positive influence on body composition, maximal oxygen consumption and serum lipids.  相似文献   

4.
Exercise plays an important role to improve cardiovascular performance. The aim of this study was to compare the effect of aerobic continuous and interval training on the left ventricular structure and function. Twenty untrained healthy male students (aged 18-22 years) were randomly divided into two groups: continuous (C; n = 10) and interval (I; n = 10). The training programme consisted of countryside jogging for 45 min during 8 weeks three times a week at 70% of maximum heart rate (MHR). In each session group C was jogging for 45 min and in group I jogging was performed in 5 nine-minute stages with a four-minute inactive rest between them. M-mode, 2-dimensional, colour and Doppler transthoracic echocardiography were performed, during resting conditions, before and after the training period. After 8-week training the end diastolic diameter, systolic blood pressure and diastolic blood pressure in groups C and I, and the posterior wall thickness and the end systolic diameter in group I showed no significant difference (P > 0.05). On the other hand, the percentage of ejection fraction and shortening fraction in groups C and I, the end systolic diameter and the posterior wall thickness in group C and the interventricular septum thickness in group I demonstrated a significant difference (P ≤ 0.05). Comparing the two groups, only the value of the interventricular septum thickness was significant (P ≤ 0.05). In general, eight-week aerobic continuous and interval training can affect left ventricular structure and function.  相似文献   

5.
During spaceflight and head-out water immersion (WI) there is a cephalad shift in blood volume. We have recently shown that left ventricular end-diastolic dimension is significantly greater during moderate cycling exercise with WI compared with on land. The purpose of this study was to determine whether the cephalad shift in blood volume and accompanying increase in cardiac preload with WI alters the normal cardiovascular adaptations to aerobic exercise training. Nine middle-aged healthy men trained on cycle ergometers in water, nine trained on land, and four served as controls for 12 wk. Following training, both training groups showed similar increase (P less than 0.05) in stroke volume and similar decreases in heart rate (P less than 0.01) and blood pressure (P less than 0.05) at a given submaximal exercise O2 consumption (VO2). Maximal VO2 increased (P less than 0.01) similarly for both training groups. The control group did not demonstrate any significant changes in submaximal or maximal exercise responses. We conclude that the cephalad shift in blood volume with WI does not alter the normal cardiovascular adaptation to aerobic exercise training.  相似文献   

6.
Cardiovascular adaptations to exercise training in the elderly   总被引:1,自引:0,他引:1  
Maximal O2 uptake (VO2max) and left ventricular function decrease with age. Endurance exercise training of sufficient intensity, frequency, and duration increases VO2max in the elderly. The mechanisms underlying the increased VO2max in the elderly are enhanced O2 extraction of trained muscle during maximal exercise leading to a wider arteriovenous O2 difference, and higher cardiac output in the trained state. However, increased cardiac output during true maximal exercise has not been documented in elderly subjects. Endurance exercise training results in a lower heart rate and rate pressure product during submaximal exercise at a given intensity. However, no improvement in left ventricular function has been reported in the elderly after exercise training. Highly trained master athletes exhibit proportional increases in the left ventricular end-diastolic dimension and wall thickness suggestive of volume-overload hypertrophy compared with age-matched sedentary controls. The magnitude of left ventricular enlargement is similar to that in young athletes. The failure of exercise training to alter the age-related deterioration of left ventricular function in the elderly may reflect an insufficient training stimulus rather than the inability of the heart to adapt to training in elderly subjects.  相似文献   

7.
To compare the effects of exercise training and hydrochlorothiazide on left ventricular (LV) geometry and mass, blood pressure (BP), and hyperinsulinemia in older hypertensive adults, we studied 28 patients randomized either to a group (age 66.4 +/- 1.3 yr; n = 16) that exercised or to a group (age 65.3 +/- 1.2 yr; n = 12) that received hydrochlorothiazide for 6 mo. Endurance exercise training induced a 15% increase in peak aerobic power. The reduction in systolic BP was twofold greater with thiazide than with exercise (26.6 +/- 12.2 vs. 11.5 +/- 10.9 mmHg). Exercise and thiazide reduced LV wall thickness, LV mass index (14% in each group), and the LV wall thickness-to-radius ratio (h/r) similarly (exercise: before 0.48 +/- 0.2, after 0.42 +/- 0.01; thiazide: before 0.47 +/- 0.04, after 0.40 +/- 0.04; P = 0.017). The reductions in systolic BP and h/r were correlated in the exercise group (r = 0.70, P = 0.005) but not in the thiazide group. Exercise training reduced glucose-stimulated hyperinsulinemia (before: 13.65 +/- 2.6 vs. 9.84 +/- 1.5 mU.ml(-1).min; P = 0.04) and insulin resistance. Thiazide did not affect plasma insulin levels. The results suggest that although exercise is less effective in reducing systolic BP than thiazide, it can induce regression of LV hypertrophy similar in magnitude to thiazide. Unlike hydrochlorothiazide, exercise training can improve insulin resistance and aerobic capacity in older hypertensive people.  相似文献   

8.
We evaluated the influence of aerobic training on cardiac remodeling in untreated spontaneously hypertensive rats (SHR). Four experimental groups were used: sedentary (W‐SED, n=27) and trained (WEX, n=31) normotensive Wistar rats, and sedentary (SHR‐SED, n=27) and exercised (SHR‐EX, n=32) hypertensive rats. At 13 months old, trained groups underwent treadmill exercise five days a week for four months. Statistical analysis: ANOVA or Kruskal‐Wallis. Exercised groups had higher physical capacity. Hypertensive groups presented left ventricular (LV) concentric hypertrophy with impaired function. Left atrium diameter, LV posterior wall thickness and relative thickness, and isovolumetric relaxation time were lower in SHR‐EX than SHR‐SED. Interstitial collagen fraction and Type I‐Type III collagen ratio were higher in SHR‐SED than W‐SED. In SHR‐EX these parameters had intermediate values between W‐EX and SHRSED with no differences between either group. Myocardial matrix metalloproteinase‐2 activity, evaluated by zymography, was higher in SHR‐SED than W‐SED and SHR‐EX. TIMP‐2 was higher in hypertensive than normotensive groups. In conclusion, low intensity aerobic exercise reduces left atrium dimension and LV posterior wall thickness, and improves functional capacity, diastolic function, and metalloproteinase‐2 activity in adult SHR.  相似文献   

9.
The effects of endurance training and anabolic steroid (Methandienone 1.5 mg.kg-1 p. o. daily) and their combination on regional collagen biosynthesis and concentration in the hearts of male beagle dogs were studied by measuring prolyl 4-hydroxylase (PH) activity and hydroxyproline (HYP) concentration. The PH (P less than 0.05) and HYP (P less than 0.05) were both greater in the subendocardinal layer than in the subepicardium (EPI) of the left ventricular wall in controls, whereas opposite gradients (P less than 0.05) were observed in the right ventricle. Endurance exercise caused an increase of PH activity in EPI of the left ventricular wall (P less than 0.01). The HYP concentration increased in both layers of the right ventricle in the exercise plus steroid group (P less than 0.05). The results suggest that transmural differences exist in the rate of collagen synthesis and concentration in canine cardiac ventricles and that endurance exercise may accelerate collagen synthesis in EPI of the left ventricle and the combination of exercise and anabolic steroid causes an increase in collagen concentration in the right ventricular wall.  相似文献   

10.
Recent evidence suggests that octogenarians exhibit attenuated adaptations to training with a small increase in peak O2 consumption (VO2) that is mediated by a modest improvement in cardiac output without an increase in arteriovenous O2 content difference. This study was designed to determine whether diminished increases in peak VO2 and cardiac output in the octogenarians are associated with absence of left ventricular and arterial adaptations to exercise training. We studied 22 octogenarians (81.9 +/- 3.7 yr, mean +/- SD) randomly assigned a group that exercised at an intensity of 82.5 +/- 5% of peak heart rate for 9 mo and 14 (age 83.1 +/- 4.1) assigned to a control group. Peak VO2 increased 12% in the exercise group but decreased slightly (-7%) in the controls. The exercise group demonstrated significant but small decreases in the heart rate (6%, P = 0.002) and the rate-pressure product (9%, P = 0.004) during submaximal exercise at an absolute work rate. Training induced no significant changes in the left ventricular size, geometry (wall thickness-to-radius ratio), mass, and function assessed with two-dimensional echocardiography or in arterial stiffness evaluated with applanation tonometry. Data suggest that the absence of cardiac and arterial adaptations may in part account for the limited gain in aerobic capacity in response to training in the octogenarians.  相似文献   

11.
To determine whether endurance exercise training can improve left ventricular function in response to beta-adrenergic stimulation, young healthy sedentary subjects (10 women and 6 men) were studied before and after 12 wk of endurance exercise training. Training consisted of 3 days/wk of interval training (running and cycling) and 3 days/wk of continuous running for 40 min. The training resulted in an increase in maximal O2 uptake from 41.0 +/- 2 to 49.3 +/- 2 ml.kg-1.min-1 (P less than 0.01). Left ventricular function was evaluated by two-dimensional echocardiography under basal conditions and during beta-adrenergic stimulation induced by isoproterenol infusion. Fractional shortening (FS) under basal conditions was unchanged after training (36 +/- 1 vs. 36 +/- 2%). During the highest dose of isoproterenol, FS was 52 +/- 1% before and 56 +/- 1% after training (P less than 0.05). At comparable changes in end-systolic wall stress (sigma es), the increase in FS induced by isoproterenol was significantly larger after training (13 +/- 1 vs. 17 +/- 2%, P less than 0.01). Furthermore there was a greater decrease in end-systolic dimension at similar changes in sigma es in the trained state during isoproterenol infusion (-4.6 +/- 0.1 mm before vs. -7.0 +/- 0.1 mm after training, P less than 0.01). There were no concurrent changes in end-diastolic dimension between the trained and untrained states during isoproterenol infusion, suggesting no significant changes in preload at comparable levels of sigma es.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Exercise is now considered an important component of management in chronic heart failure (CHF), but little is known about central hemodynamic changes that occur during different exercise modalities in these patients. Seventeen patients (ejection fraction 25 +/- 2%) undertook brachial artery and right heart catheterization and oxygen consumption assessment at rest, during submaximal and peak cycling (Cyc), and during submaximal upper and lower limb resistance exercise. Cardiac output (CO) increased relative to baseline during peak Cyc (P < 0.05) but did not change during submaximal Cyc or upper or lower limb exercise. Heart rate (HR) was lowest during upper limb exercise and progressively increased during lower limb exercise, submaximal Cyc, and peak Cyc, with significant differences between each of these (P < 0.01). Conversely, stroke volume (SV) decreased during submaximal Cyc and lower limb exercise and was lower during peak and submaximal Cyc and lower limb exercise than during upper limb exercise (P < 0.05). CHF patients are dependent on increases in HR to increase CO during exercise when SV may decline. Resistance exercise, performed at appropriate intensity, induces a similar hemodynamic burden to aerobic exercise in patients with CHF.  相似文献   

13.
The object of this study was to investigate the possible concentric increase in the left ventricular (LV) wall thickness by intensive strength training and to differentiate between the specific effect of the strength training itself and the influence of anabolic drugs. In this study 21 top-level bodybuilders [users of anabolic steroids (A): n = 14; non-users (N): n = 7] underwent one-dimensional and two-dimensional echocardiography as well as a cycle ergometer test. In both groups blood pressure at rest and during ergometric exercise was within the normal range. In spite of the same amount of time being spent on training, A showed significantly better power results than N. Total heart volume (A = 11.3 +/- 0.9 ml.kg-1; N = 11.9 +/- 0.9 ml.kg-1) and LV muscle mass were almost identical in A and N and correlated significantly with body weight and lean body mass respectively. The body dimension-related diastolic LV diameter was significantly lower in A (0.567 +/- 0.062 mm.kg-1) than in N (0.639 +/- 0.040 mm.kg-1). An increase in the LV posterior wall (p less than 0.01) and septum thickness (ns) resulted in increased LV wall thickness:diameter (p less than 0.01) and LV muscle mass:volume (p less than 0.05) ratios in A (0.458 +/- 0.590; 1.38 +/- 0.25 g.ml-1) in comparison to N (0.356 +/- 0.077; 1.16 +/- 0.17 g.ml-1). The septal:posterior wall thickness ratio was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Aging in humans is associated with loss of lean body mass, but the causes are incompletely defined. Lean tissue mass and function depend on continuous rebuilding of proteins. We tested the hypotheses that whole body and mixed muscle protein metabolism declines with age in men and women and that aerobic exercise training would partly reverse this decline. Seventy-eight healthy, previously untrained men and women aged 19-87 yr were studied before and after 4 mo of bicycle training (up to 45 min at 80% peak heart rate, 3-4 days/wk) or control (flexibility) activity. At the whole body level, protein breakdown (measured as [13C]leucine and [15N]phenylalanine flux), Leu oxidation, and protein synthesis (nonoxidative Leu disposal) declined with age at a rate of 4-5% per decade (P < 0.001). Fat-free mass was closely correlated with protein turnover and declined 3% per decade (P < 0.001), but even after covariate adjustment for fat-free mass, the decline in protein turnover with age remained significant. There were no differences between men and women after adjustment for fat-free mass. Mixed muscle protein synthesis also declined with age 3.5% per decade (P < 0.05). Exercise training improved aerobic capacity 9% overall (P < 0.01), and mixed muscle protein synthesis increased 22% (P < 0.05), with no effect of age on the training response for either variable. Fat-free mass, whole body protein turnover, and resting metabolic rate were unchanged by training. We conclude that rates of whole body and muscle protein metabolism decline with age in men and women, thus indicating that there is a progressive decline in the body's remodeling processes with aging. This study also demonstrates that aerobic exercise can enhance muscle protein synthesis irrespective of age.  相似文献   

15.
Exercise training elicits morphological adaptations in the left ventricle (LV) and large-conduit arteries that are specific to the type of training performed (i.e., endurance vs. resistance exercise). We investigated whether the mode of chronic exercise training, and the associated cardiovascular adaptations, influence the blood pressure responses to orthostatic stimulation in 30 young healthy men (10 sedentary, 10 endurance trained, and 10 resistance trained). The endurance-trained group had a significantly larger LV end-diastolic volume normalized by body surface area (vs. sedentary and resistance-trained groups), whereas the resistance-trained group had a significantly higher LV wall thickness and aortic pulse wave velocity (PWV) compared with the endurance-trained group. In response to 60° head-up tilt (HUT), mean arterial pressure (MAP) rose in the resistance-trained group (+6.5 ± 1.6 mmHg, P < 0.05) but did not change significantly in sedentary and the endurance-trained groups. Systolic blood pressure (SBP) decreased in endurance-trained group (-8.3 ± 2.4 mmHg, P < 0.05) but did not significantly change in sedentary and resistance-trained groups. A forward stepwise multiple regression analysis revealed that LV wall thickness and aortic PWV were significantly and independently associated with the MAP response to HUT, explaining ~41% of its variability (R(2) =0.414, P < 0.001). Likewise, aortic PWV and the corresponding HUT-mediated change in stroke volume were significantly and independently associated with the SBP response to HUT, explaining ~52% of its variability (R(2) = 0.519, P < 0.0001). Furthermore, the change in stroke volume significantly correlated with LV wall thickness (r = 0.39, P < 0.01). These results indicate that chronic resistance and endurance exercise training differentially affect the BP response to HUT, and that this appears to be associated with training-induced morphological adaptations of the LV and large-conduit arteries.  相似文献   

16.
Exercise training of a muscle group improves local vascular function in subjects with chronic heart failure (CHF). We studied forearm resistance vessel function in 12 patients with CHF in response to an 8-wk exercise program, which specifically excluded forearm exercise, using a crossover design. Forearm blood flow (FBF) was measured using strain-gauge plethysmography. Responses to three dose levels of intra-arterial acetylcholine were significantly augmented after exercise training when analyzed in terms of absolute flows (7.0 +/- 1.8 to 10.9 +/- 2.1 ml x 100 ml(-1) x min(-1) for the highest dose, P < 0.05 by ANOVA), forearm vascular resistance (21.5 +/- 5.0 to 15.3 +/- 3.9 ml x 100 ml forearm(-1) x min(-1), P < 0.01), or FBF ratios (P < 0.01, ANOVA). FBF ratio responses to sodium nitroprusside were also significantly increased after training (P < 0.05, ANOVA). Reactive hyperemic flow significantly increased in both upper limbs after training (27.9 +/- 2.7 to 33.5 +/- 3.1 ml x 100 ml(-1) x min(-1), infused limb; P < 0.05 by paired t-test). Exercise training improves endothelium-dependent and -independent vascular function and peak vasodilator capacity in patients with CHF. These effects on the vasculature are generalized, as they were evident in a vascular bed not directly involved in the exercise stimulus.  相似文献   

17.
In order to study left ventricular hypertrophy patterns in obese hypertensives, we examined 132 patients with essential hypertension by 2D, M-mode and Doppler echocardiography. The patients were classified in four comparable groups, corresponding to the values of Quetelet's body mass index (BMI) and grades of obesity. More obese hypertensives had on average larger left ventricles with thicker walls and larger left atria than less obese, or lean ones. Left ventricular mass increased significantly and progressively with advancing grades of obesity, but relative wall thickness (wall thickness/cavity size ratio) did not diminish. Doppler echocardiography revealed significantly higher prevalence of left ventricular diastolic dysfunction among obese than among lean hypertensives. In the second part of our study, we analyzed the subgroups defined by the severity of hypertension and the age of the patients. The correlation of the indices of left ventricular and left atrial hypertrophy with the BMI values was considerably better in the group of moderate than in the group of mild hypertension. The r values were 0.62 vs. 0.22 for left ventricular mass and 0.64 vs. 0.26 for left atrial dimension. The group of patients with severe hypertension was characterized by left ventricular cavity enlargement in correlation with increasing BMI values, but without corresponding left ventricular wall thickening. So called left ventricular "eccentricity index", as the reverse value of relative wall thickness, correlated well (r = 0.76) with the BMI values. The indices of left ventricular hypertrophy correlated with the BMI values slightly better in middle age groups than in the groups of the youngest (< or = 30 years) or the eldest (> or = 61 years) hypertensives. In conclusion, eccentric left ventricular hypertrophy does not seem to be a distinctive feature of hypertensive heart disease in obesity. There is only some tendency toward the "eccentricity" of left ventricular geometry which becomes more apparent in more severe forms of hypertension, especially in very obese persons.  相似文献   

18.
This study questioned the effect of living and training at moderate altitude on cardiac morphological and functional adaptations and tested the incidences of potential specific adaptations compared with aerobic sea level training on maximal left ventricular performance. Sea level-native rats were randomly assigned to N (living in normoxia), NT (living and training 5 days/wk for 5 wk in normoxia), CH (living in hypoxia, 2,800 m), and CHT (living and training 5 days/wk for 5 wk in hypoxia, 2,800 m) groups. Cardiac adaptations were evaluated throughout the study period by Doppler echocardiography. Maximal stroke volume (LV(SVmax)) was measured during volume overloading before and after the study period. Finally, at the end of the study period, passive pressure-volume relationships on isolated heart and cardiac weighing were obtained. Altitude training resulted in a specific left ventricular (LV) remodeling compared with NT, characterized by an increase in wall thicknesses without any alteration in internal dimensions. These morphological adaptations associated with hypoxia-induced alterations in pulmonary outflow and preload conditions led to a decrease in LV filling and subsequently no improvement in LV performance during resting physiological conditions in CHT compared with NT. Such a lack of improvement was confirmed during volume overloading that simulated maximal effort (LV(SVmax) pretest: NT = 0.58 +/- 0.05, CHT = 0.57 +/- 0.08 ml; posttest: NT = 0.72 +/- 0.06, CHT = 0.58 +/- 0.07 ml; NT vs. CHT in posttest session, P < 0.05). Maximal aerobic velocities increased to the same extent in NT and CHT rats despite marked polycythemia in the latter. The lack of LV(SVmax) improvement resulting from altitude training-induced cardiac morphological and functional adaptations could be responsible for this phenomenon.  相似文献   

19.
目的:探讨α-酮酸片(α-KA)对维持性血液透析(MHD)患者心脏功能和结构的影响。方法:观察30例α-酮酸片(商品名:开同)治疗组维持性血液透析患者与30例对照组患者,分别在治疗前及治疗6个月后超声心动图测定心脏结构指标:左房收缩末期内径(LADs)、左室舒张末期内径(LVEDd)、室间隔舒张末期厚度(IVSTd)、左室后壁舒张末期厚度(LVPWTd),左房内径指数(LAI)、左心室心肌重量指数(LVMI)、相对室壁厚度(RWT),心脏功能指标:左室射血分数(LVEF),左室短轴缩短率(FS),二尖瓣口舒张早期和晚期最大血流速度比(E/A)各项指标等检测,比较治疗前后各指标变化。结果:治疗组MHD患者心脏结构指标:左房收缩末期内径(LADs)、左室舒张末期内径(LVEDd)、室间隔舒张末期厚度(IVSTd)、左室后壁舒张末期厚度(LVPWTd),左房内径指数(LAI)、左心室心肌重量指数(LVMI)值均明显低于对照组,二者差异有显著性(P〈0.05),两组相对室壁厚度(RWT)相比没有明显的差异(P〉0.05)。心脏功能指标:左室射血分数(LVEF),左室短轴缩短率(FS),二尖瓣口舒张早期和晚期最大血流速度比(E/A)值较对照组明显增高(P〈0.05),有统计学意义。结论:α-酮酸片可以改善MHD患者的心脏结构和功能,其对MHD患者心血管并发症的预防和治疗有一定临床指导意义。  相似文献   

20.
Prolonged exercise induces left ventricular dysfunction in healthy subjects   总被引:2,自引:0,他引:2  
To determine the effects of a moderately prolonged exercise on left ventricular systolic performance, 23 healthy male subjects, aged 18 to 51 yr (mean 37 yr) were studied. The subjects exercised first on a treadmill (brief exercise) and completed, on a separate day, a 20-km run. M-mode, two-dimensional, and Doppler echocardiography, as well as calibrated carotid pulse tracings, were obtained at rest and immediately on completion of both brief and prolonged exercise. Left ventricular systolic function was assessed by end-systolic stress-shortening relationships. Heart rate increased similarly after brief and prolonged exercise (+30%). Mean arterial pressure decreased from 99 +/- 7 to 92 +/- 8 mmHg (P less than 0.001) after prolonged exercise, but it remained unchanged after brief exercise. Left ventricular end-diastolic volume was decreased after prolonged exercise (130 +/- 23 vs. 147 +/- 18 ml at rest, P less than 0.01). Both ejection fraction and rate-adjusted mean velocity of fiber shortening decreased after prolonged exercise [from 67 +/- 5 to 60 +/- 6% (P less than 0.001) and from 1.12 +/- 0.2 to 0.91 +/- 0.2 cm/s (P less than 0.001), respectively] despite a lower circumferential end-systolic wall stress (133 +/- 23 vs. 152 +/- 20 g/cm2). The relationship between ejection fraction (or mean velocity of fiber shortening adjusted for heart rate) and end-systolic wall stress was displaced downward on race finish (P less than 0.05). These changes were independent of the changes in left ventricular end-diastolic volume and hence those in preload. The data suggest that moderately prolonged exercise may result in depressed left ventricular performance in healthy normal subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号