首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Peripheral membrane proteins utilize a variety of mechanisms to attach tightly, and often reversibly, to cellular membranes. The covalent lipid modifications, myristoylation and palmitoylation, are critical for plasma membrane localization of heterotrimeric G protein alpha subunits. For alpha(s) and alpha(q), two subunits that are palmitoylated but not myristoylated, we examined the importance of interacting with the G protein betagamma dimer for their proper plasma membrane localization and palmitoylation. Conserved alpha subunit N-terminal amino acids predicted to mediate binding to betagamma were mutated to create a series of betagamma binding region mutants expressed in HEK293 cells. These alpha(s) and alpha(q) mutants were found in soluble rather than particulate fractions, and they no longer localized to plasma membranes as demonstrated by immunofluorescence microscopy. The mutations also inhibited incorporation of radiolabeled palmitate into the proteins and abrogated their signaling ability. Additional alpha(q) mutants, which contain these mutations but are modified by both myristate and palmitate, retained their localization to plasma membranes and ability to undergo palmitoylation. These findings identify binding to betagamma as a critical membrane attachment signal for alpha(s) and alpha(q) and as a prerequisite for their palmitoylation, while myristoylation can restore membrane localization and palmitoylation of betagamma binding-deficient alpha(q) subunits.  相似文献   

3.
The G protein subunit, betagamma, plays an important role in targeting alpha subunits to the plasma membrane and is essential for binding and activation of the heterotrimer by heptahelical receptors. Mutation of residues in the N-terminal alpha-helix of alpha s and alpha q that contact betagamma in the crystal structure of alpha i reduces binding between alpha and betagamma, inhibits plasma membrane targeting and palmitoylation of the alpha subunit, and results in G proteins that fail to couple receptor activation to stimulation of effector. Overexpression of betagamma can recover this loss of signaling through Gs but not Gq. In fact, a single mutation (I25A) in alpha q can block alpha q-mediated generation of inositol phosphates. Function is not recovered by betagamma overexpression nor myristoylation directed plasma membrane localization. Introduction of a Q209L activating mutation with I25A results in a constitutively active alpha q as expected, but surprisingly a R183C activating mutation does not result in constitutive activity when present with I25A. Examination of binding between alpha and betagamma via a pull down assay shows that the N-terminal betagamma-binding mutations inhibit alpha-betagamma binding significantly more than the R183C or Q209L activating mutations do. Moreover, introduction of the I25A mutation into alpha q RC disrupts co-immunoprecipitation with PLCbeta1. Taken together, results presented here suggest that alpha-betagamma binding is necessary at a point downstream from receptor activation of the heterotrimeric G protein for signal transduction by alpha q.  相似文献   

4.
Heterotrimeric G proteins typically localize at the cytoplasmic face of the plasma membrane where they interact with heptahelical receptors. For G protein alpha subunits, multiple membrane targeting signals, including myristoylation, palmitoylation, and interaction with betagamma subunits, facilitate membrane localization. Here we show that an additional membrane targeting signal, an N-terminal polybasic region, plays a key role in plasma membrane localization of non-myristoylated alpha subunits. Mutations of N-terminal basic residues in alpha(s) and alpha(q) caused defects in plasma membrane localization, as assessed through immunofluorescence microscopy and biochemical fractionations. In alpha(s), mutation of four basic residues to glutamine was sufficient to cause a defect, whereas in alpha(q) a defect in membrane localization was not observed unless nine basic residues were mutated to glutamine or if three basic residues were mutated to glutamic acid. betagamma co-expression only partially rescued the membrane localization defects; thus, the polybasic region is also important in the context of the heterotrimer. Introduction of a site for myristoylation into the polybasic mutants of alpha(s) and alpha(q) recovered strong plasma membrane localization, indicating that myristoylation and polybasic motifs may have complementary roles as membrane targeting signals. Loss of plasma membrane localization coincided with defects in palmitoylation. The polybasic mutants of alpha(s) and alpha(q) were still capable of assuming activated conformations and stimulating second messenger production, as demonstrated through GST-RGS4 interaction assays, cAMP assays, and inositol phosphate assays. Electrostatic interactions with membrane lipids have been found to be important in plasma membrane targeting of many proteins, and these results provide evidence that basic residues play a role in localization of G protein alpha subunits.  相似文献   

5.
The Ras homology (Rho) guanine nucleotide exchange factor p115-RhoGEF couples the alpha(13) heterotrimeric guanine nucleotide binding protein (G protein) subunit to Rho GTPase. Alpha(13) binds to a regulator of G protein signaling (RGS) domain in p115-RhoGEF, but the mechanism of alpha(13) activation of p115-RhoGEF is poorly understood. In this report, we demonstrate in cell-based assays that the acidic-rich N-terminus, adjacent to the RGS domain, is required for binding to activated alpha(13), and refine the importance of this region by showing that mutation of glutamic acids 27 and 29 in full-length p115-RhoGEF is sufficient to prevent interaction with activated alpha(13). However, alpha(13)-interacting deficient N-terminal mutants of p115-RhoGEF retain alpha(13)-dependent plasma membrane recruitment. Overall, these findings demonstrate a critical role for the N-terminal extension of p115-RhoGEF in mediating binding to alpha(13) and dissociate two activities of p115-RhoGEF: binding to activated alpha(13) and translocation to the PM in response to activated alpha(13).  相似文献   

6.
Mammalian cells contain two isoforms of the type II PI4K (phosphoinositol 4-kinase), PI4KIIalpha and beta. These 55 kDa proteins have highly diverse N-terminal regions (approximately residues 1-90) but conserved catalytic domains (approximately from residue 91 to the C-termini). Nearly the entire pool of PI4KIIalpha behaves as an integral membrane protein, in spite of a lack of a transmembrane domain. This integral association with membranes is due to palmitoylation of a cysteine-rich motif, CCPCC, located within the catalytic domain. Although the CCPCC motif is conserved in PI4KIIbeta, only 50% of PI4KIIbeta is membrane-associated, and approximately half of this pool is only peripherally attached to the membranes. Growth factor stimulation or overexpression of a constitutively active Rac mutant induces the translocation of a portion of cytosolic PI4KIIbeta to plasma membrane ruffles and stimulates its activity. Here, we demonstrate that membrane-associated PI4KIIbeta undergoes two modifications, palmitoylation and phosphorylation. The cytosolic pool of PI4KIIbeta is not palmitoylated and has much lower lipid kinase activity than the membrane-associated kinase. Although only membrane-associated PI4KIIbeta is phosphorylated in the unique N-terminal region, this modification apparently does not influence its membrane binding or activity. A series of truncation mutants and alpha/beta chimaeras were generated to identify regions responsible for the isoform-specific behaviour of the kinases. Surprisingly, the C-terminal approx. 160 residues, and not the diverse N-terminal regions, contain the sites that are most important in determining the different solubilities, palmitoylation states and stimulus-dependent redistributions of PI4KIIalpha and beta.  相似文献   

7.
Mutation of Galpha(q) or Galpha(s) N-terminal contact sites for Gbetagamma resulted in alpha subunits that failed to localize at the plasma membrane or undergo palmitoylation when expressed in HEK293 cells. We now show that overexpression of specific betagamma subunits can recover plasma membrane localization and palmitoylation of the betagamma-binding-deficient mutants of alpha(s) or alpha(q). Thus, the betagamma-binding-defective alpha is completely dependent on co-expression of exogenous betagamma for proper membrane localization. In this report, we examined the ability of beta(1-5) in combination with gamma(2) or gamma(3) to promote proper localization and palmitoylation of mutant alpha(s) or alpha(q). Immunofluorescence localization, cellular fractionation, and palmitate labeling revealed distinct subtype-specific differences in betagamma interactions with alpha subunits. These studies demonstrate that 1) alpha and betagamma reciprocally promote the plasma membrane targeting of the other subunit; 2) beta(5), when co-expressed with gamma(2) or gamma(3), fails to localize to the plasma membrane or promote plasma membrane localization of mutant alpha(s) or alpha(q); 3) beta(3) is deficient in promoting plasma membrane localization of mutant alpha(s) and alpha(q), whereas beta(4) is deficient in promoting plasma membrane localization of mutant alpha(q); 4) both palmitoylation and interactions with betagamma are required for plasma membrane localization of alpha.  相似文献   

8.
Activation-induced subcellular redistribution of Gs alpha.   总被引:4,自引:2,他引:2       下载免费PDF全文
We have examined the subcellular distribution of alpha s, the alpha subunit of the heterotrimeric G protein Gs, by using immunofluorescence microscopy. In transiently transfected HEK293 cells, wild-type alpha s localizes to the plasma membrane. However, a mutationally activated alpha s (alpha sR201C) is diffusely distributed throughout the cytoplasm. Similarly, cholera toxin activation of alpha s causes it to redistribute from the plasma membrane to cytoplasm in stably transfected cells. In HEK293 cells stably transfected with alpha s and the beta 2-adrenergic receptor (beta-AR), stimulation of the beta-AR by the agonist isoproterenol also causes a translocation of alpha s from the plasma membrane to cytoplasm. Replacing the agonist with antagonist allows alpha s to return to the plasma membrane, demonstrating the reversibility of alpha s translocation. Receptor-activated alpha s does not colocalize with internalized beta-AR at endosomes. Incubation of cells in hypertonic sucrose to inhibit clathrin-coated pit-mediated endocytosis of agonist-activated beta-AR failed to block agonist-stimulated redistribution of alpha s. These findings demonstrate that activated alpha s reversibly undergoes a translocation from the plasma membrane to cytoplasm and begin to address the relationship between regulated trafficking of a seven-transmembrane receptor and its cognate G protein.  相似文献   

9.
Different assay technologies are available that allow ligand occupancy of G protein coupled receptors to be converted into robust functional assay signals. Of particular interest are universal screening systems such that activation of any GPCR can be detected with a common assay end point. The promiscuous G protein Galpha16 and chimeric G proteins are broadly used tools for setting up almost universal assay systems. Many efforts focused on making G proteins more promiscuous, however no attempts have been made to make promiscuos G proteins more sensitive by interfering with their cellular protein distribution. As a model system, we used a promiscuous G protein alphaq subunit, that lacks the highly conserved six amino acid N-terminal extension and bears four residues of alphai sequence at its C-terminus replacing the corresponding alphaq sequence (referred to as delta6qi4). When expressed in COS7 cells, delta6qi4 undergoes palmitoylation at its N-terminus. Cell fractionation and immunoblotting analysis indicated localization in the particulate and cytosolic fraction. Interestingly, introduction of a consensus site for N-terminal myristoylation (the resulting mutant referred to as delta6qi4myr) created a protein that was dually acylated and exclusively located in the particulate fraction. As a measure of G protein activation delta6qi4 and delta6qi4myr were coexpressed (in CHO cells) with a series of different Gi/o coupled receptors and ligand induced increases in intracellular Ca2+ release were determined with the FLIPR technology (Fluorescence plate imaging reader from Molecular Devices Corp.). All of the receptors interacted more efficiently with delta6qi4myr as compared with delta6qi4. It could be shown that increased functional responses of agonist activated GPCRs are due to the higher content of delta6qi4myr in the plasma membrane. Our results indicate that manipulation of subcellular localization of G protein alpha subunits-moving them from the cytosol to the plasma membrane-potentiates signaling of agonist activated GPCRs. It is concluded that addition of myristoylation sites into otherwise exclusively palmitoylated G proteins is a new and sensitive approach and may be applicable when functional assays are expected to yield weak signals as is the case when screening extracts of tissues for biologically active GPCR ligands.  相似文献   

10.
According to the two-state model of G-protein-coupled receptor (GPCR) activation, GPCRs isomerize from an inactive (R) state to an active (R*) state. In the R* state, GPCRs activate G-proteins. Agonist-independent R/R* isomerization is referred to as constitutive activity and results in an increase in basal G-protein activity, i.e. GDP/GTP exchange. Agonists stabilize the R* state and further increase, whereas inverse agonists stabilize the R state and decrease, basal G-protein activity. Constitutive activity is observed in numerous wild-type GPCRs and disease-causing GPCR mutants with increased constitutive activity. The human formyl peptide receptor (FPR) exists in several isoforms (FPR-26, FPR-98 and FPR-G6) and activates chemotaxis and cytotoxic cell functions of phagocytes through G(i)-proteins. Studies in HL-60 leukemia cell membranes demonstrated inhibitory effects of Na(+) and pertussis toxin on basal G(i)-protein activity, suggesting that the FPR is constitutively active. However, since HL-60 cells express several constitutively active chemoattractant receptors, analysis of constitutive FPR activity was difficult. Sf9 insect cells do not express chemoattractant receptors and G(i)-proteins and provide a sensitive reconstitution system for FPR/G(i)-protein coupling. Such expression studies showed that FPR-26 is much more constitutively active than FPR-98 and FPR-G6 as assessed by the relative inhibitory effects of Na(+) and of the inverse agonist cyclosporin H on basal G(i)-protein activity. Site-directed mutagenesis studies suggest that the E346A exchange in the C-terminus critically determines dimerization and constitutive activity of FPR. Moreover, N-glycosylation of the N-terminus seems to be important for constitutive FPR activity. Finally, we discuss some future directions of research.  相似文献   

11.
Takida S  Wedegaertner PB 《FEBS letters》2004,567(2-3):209-213
Heterotrimeric G proteins are lipid-modified, peripheral membrane proteins that function at the inner surface of the plasma membrane (PM) to relay signals from cell-surface receptors to downstream effectors. Cellular trafficking pathways that direct nascent G proteins to the PM are poorly defined. In this report, we test the proposal that G proteins utilize the classical exocytic pathway for PM targeting. PM localization of the G protein heterotrimers alpha s beta 1 gamma 2 and alpha q beta 1 gamma 2 occurred independently of treatment of cells with Brefeldin A, which disrupts the Golgi, or expression of Sar1 mutants, which prevent the formation of endoplasmic reticulum to Golgi transport vesicles. Moreover, the palmitoylation of alpha q was unaffected by Brefeldin A treatment, even though the palmitoylation of SNAP25 was blocked by Brefeldin A. Non-palmitoylated mutants of alpha s and alpha q failed to stably bind to beta gamma and displayed a dispersed cytoplasmic localization when co-expressed with beta gamma. These findings support a refined model of the PM trafficking pathway of G proteins, involving assembly of the heterotrimer at the endoplasmic reticulum and transport to the PM independently of the Golgi.  相似文献   

12.
Determinants of membrane targeting of Rho proteins were investigated in live cells with green fluorescent fusion proteins expressed with or without Rho-guanine nucleotide dissociation inhibitor (GDI)alpha. The hypervariable region determined to which membrane compartment each protein was targeted. Targeting was regulated by binding to RhoGDI alpha in the case of RhoA, Rac1, Rac2, and Cdc42hs but not RhoB or TC10. Although RhoB localized to the plasma membrane (PM), Golgi, and motile peri-Golgi vesicles, TC10 localized to PMs and endosomes. Inhibition of palmitoylation mislocalized H-Ras, RhoB, and TC10 to the endoplasmic reticulum. Although overexpressed Cdc42hs and Rac2 were observed predominantly on endomembrane, Rac1 was predominantly at the PM. RhoA was cytosolic even when expressed at levels in vast excess of RhoGDI alpha. Oncogenic Dbl stimulated translocation of green fluorescent protein (GFP)-Rac1, GFP-Cdc42hs, and GFP-RhoA to lamellipodia. RhoGDI binding to GFP-Cdc42hs was not affected by substituting farnesylation for geranylgeranylation. A palmitoylation site inserted into RhoA blocked RhoGDI alpha binding. Mutations that render RhoA, Cdc42hs, or Rac1, either constitutively active or dominant negative abrogated binding to RhoGDI alpha and redirected expression to both PMs and internal membranes. Thus, despite the common essential feature of the CAAX (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) motif, the subcellular localizations of Rho GTPases, like their functions, are diverse and dynamic.  相似文献   

13.
Palmitoylation is a reversible post-translational modification used by cells to regulate protein activity. The regulator of G-protein signaling (RGS) proteins RGS4 and RGS16 share conserved cysteine (Cys) residues that undergo palmitoylation. In the accompanying article (Hiol, A., Davey, P. C., Osterhout, J. L., Waheed, A. A., Fischer, E. R., Chen, C. K., Milligan, G., Druey, K. M., and Jones, T. L. Z. (2003) J. Biol. Chem. 278, 19301-19308), we determined that mutation of NH2-terminal cysteine residues in RGS16 (Cys-2 and Cys-12) reduced GTPase accelerating (GAP) activity toward a 5-hydroxytryptamine (5-HT1A)/G alpha o1 receptor fusion protein in cell membranes. NH2-terminal acylation also permitted palmitoylation of a cysteine residue in the RGS box of RGS16 (Cys-98). Here we investigated the role of internal palmitoylation in RGS16 localization and GAP activity. Mutation of RGS16 Cys-98 or RGS4 Cys-95 to alanine reduced GAP activity on the 5-HT1A/G alpha o1 fusion protein and regulation of adenylyl cyclase inhibition. The C98A mutation had no effect on RGS16 localization or GAP activity toward purified G-protein alpha subunits. Enzymatic palmitoylation of RGS16 resulted in internal palmitoylation on residue Cys-98. Palmitoylated RGS16 or RGS4 WT but not C98A or C95A preincubated with membranes expressing 5-HT1a/G alpha o1 displayed increased GAP activity over time. These results suggest that palmitoylation of a Cys residue in the RGS box is critical for RGS16 and RGS4 GAP activity and their ability to regulate Gi-coupled signaling in mammalian cells.  相似文献   

14.
The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein gamma subunit family translocate specifically from the PM to endomembranes. The gamma subunits translocate as betagamma complexes, whereas the alpha subunit is retained on the PM. Depending on the gamma subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the gamma subunit type. Different gamma subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various gamma subunits and their translocation properties. gamma subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092-24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein betagamma subunits to intracellular membranes.  相似文献   

15.
In G protein-coupled receptors (GPCRs), a conserved aspartic acid in the DRY motif at the cytoplasmic end of helix 3 regulates the transition to the active state, while the adjacent arginine is crucial for G protein activation. To examine the functions of these two residues, we made D130I and R131Q mutations in the alpha2A adrenergic receptor (AR). We demonstrate that, unlike other GPCRs, the alpha2A AR is not constitutively activated by the D130I mutation, although the mutation increases agonist affinity. While the R131Q mutation severely disrupts function, it decreases rather than increasing agonist affinity as seen in other GPCRs. We then investigated the molecular effects of the same mutations in a peptide model and showed that Arg131 is not required for peptide-mediated G protein activation. These results indicate that the alpha2A AR does not follow the conventional GPCR mechanistic paradigm with respect to the function of the DRY motif.  相似文献   

16.
G protein-coupled receptors (GPCRs) are important targets for medicinal agents. Four different G protein families, G(s), G(i), G(q), and G(12), engage in their linkage to activation of receptor-specific signal transduction pathways. G(12) proteins were more recently studied, and upon activation by GPCRs they mediate activation of RhoGTPase guanine nucleotide exchange factors (RhoGEFs), which in turn activate the small GTPase RhoA. RhoA is involved in many cellular and physiological aspects, and a dysfunction of the G(12/13)-Rho pathway can lead to hypertension, cardiovascular diseases, stroke, impaired wound healing and immune cell functions, cancer progression and metastasis, or asthma. In this study, regulator of G protein signaling (RGS) domain-containing RhoGEFs were tagged with enhanced green fluorescent protein (EGFP) to detect their subcellular localization and translocation upon receptor activation. Constitutively active Galpha(12) and Galpha(13) mutants induced redistribution of these RhoGEFs from the cytosol to the plasma membrane. Furthermore, a pronounced and rapid translocation of p115-RhoGEF from the cytosol to the plasma membrane was observed upon activation of several G(12/13)-coupled GPCRs in a cell type-independent fashion. Plasma membrane translocation of p115-RhoGEF stimulated by a GPCR agonist could be completely and rapidly reversed by subsequent application of an antagonist for the respective GPCR, that is, p115-RhoGEF relocated back to the cytosol. The translocation of RhoGEF by G(12/13)-linked GPCRs can be quantified and therefore used for pharmacological studies of the pathway, and to discover active compounds in a G(12/13)-related disease context.  相似文献   

17.
Chen S  Lin F  Xu M  Hwa J  Graham RM 《The EMBO journal》2000,19(16):4265-4271
alpha(1)-adrenergic receptors (alpha(1)-ARs) are members of the G-protein-coupled receptor (GPCR) superfamily and activate inositol phosphate (IP) turnover. We show that glycine and asparagine mutations of Phe303 in transmembrane segment VI (TMVI) of the alpha(1B)-AR, a highly conserved residue in GPCRs, although increasing agonist affinity, abolish agonist-activated IP signalling. Co-expression of the Phe303 mutants also inhibited (-)epinephrine-stimulated IP signalling by wild-type alpha(1B)-AR and other G(q)-coupled receptors, as well as IP signalling mediated by AlF(4)(-) stimulation of both wild-type G(q alpha) and a constitutively active mutant. The inability of the Phe303 mutants to signal is due to induction of a receptor conformation that dissociates G-protein binding from activation. As a result, the Phe303 mutants sequester G(q alpha) and stoichiometrically inhibit Gq signalling in a dominant-negative manner. We further show that both the enhanced basal and agonist-stimulated IP-signalling activity of the constitutively active alpha(1B)-AR mutants, C128F and A293E, are inhibited in the double mutants, C128F/F303G and A293E/F303G. Phe303, therefore, appears to be critically involved in coupling TMVI alpha-helical movement, a key step in receptor activation, to activation of the cognate G-protein.  相似文献   

18.
G protein-coupled receptors (GPCRs) transduce cellular signals from hormones, neurotransmitters, light, and odorants by activating heterotrimeric guanine nucleotide-binding (G) proteins. For many GPCRs, short term regulation is initiated by agonist-dependent phosphorylation by GPCR kinases (GRKs), such as GRK2, resulting in G protein/receptor uncoupling. GRK2 also regulates signaling by binding G alpha(q/ll) and inhibiting G alpha(q) stimulation of the effector phospholipase C beta. The binding site for G alpha(q/ll) resides within the amino-terminal domain of GRK2, which is homologous to the regulator of G protein signaling (RGS) family of proteins. To map the Galpha(q/ll) binding site on GRK2, we carried out site-directed mutagenesis of the RGS homology (RH) domain and identified eight residues, which when mutated, alter binding to G alpha(q/ll). These mutations do not alter the ability of full-length GRK2 to phosphorylate rhodopsin, an activity that also requires the amino-terminal domain. Mutations causing G alpha(q/ll) binding defects impair recruitment to the plasma membrane by activated G alpha(q) and regulation of G alpha(q)-stimulated phospholipase C beta activity when introduced into full-length GRK2. Two different protein interaction sites have previously been identified on RH domains. The G alpha binding sites on RGS4 and RGS9, called the "A" site, is localized to the loops between helices alpha 3 and alpha 4, alpha 5 and alpha 6, and alpha 7 and alpha 8. The adenomatous polyposis coli (APC) binding site of axin involves residues on alpha helices 3, 4, and 5 (the "B" site) of its RH domain. We demonstrate that the G alpha(q/ll) binding site on the GRK2 RH domain is distinct from the "A" and "B" sites and maps primarily to the COOH terminus of its alpha 5 helix. We suggest that this novel protein interaction site on an RH domain be designated the "C" site.  相似文献   

19.
To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [3H]myristic acid or [3H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.  相似文献   

20.
《The Journal of cell biology》1996,133(5):1027-1040
Heterotrimeric G proteins are well known to be involved in signaling via plasma membrane (PM) receptors. Recent data indicate that heterotrimeric G proteins are also present on intracellular membranes and may regulate vesicular transport along the exocytic pathway. We have used subcellular fractionation and immunocytochemical localization to investigate the distribution of G alpha and G beta gamma subunits in the rat exocrine pancreas which is highly specialized for protein secretion. We show that G alpha s, G alpha i3 and G alpha q/11 are present in Golgi fractions which are > 95% devoid of PM. Removal of residual PM by absorption on wheat germ agglutinin (WGA) did not deplete G alpha subunits. G alpha s was largely restricted to TGN- enriched fractions by immunoblotting, whereas G alpha i3 and G alpha q/11 were broadly distributed across Golgi fractions. G alpha s did not colocalize with TGN38 or caveolin, suggesting that G alpha s is associated with a distinct population of membranes. G beta subunits were barely detectable in purified Golgi fractions. By immunofluorescence and immunogold labeling, G beta subunits were detected on PM but not on Golgi membranes, whereas G alpha s and G alpha i3 were readily detected on both Golgi and PM. G alpha and G beta subunits were not found on membranes of zymogen granules. These data indicate that G alpha s, G alpha q/11, and G alpha i3 associate with Golgi membranes independent of G beta subunits and have distinctive distributions within the Golgi stack. G beta subunits are thought to lock G alpha in the GDP-bound form, prevent it from activating its effector, and assist in anchoring it to the PM. Therefore the presence of free G alpha subunits on Golgi membranes has several important functional implications: it suggests that G alpha subunits associated with Golgi membranes are in the active, GTP-bound form or are bound to some other unidentified protein(s) which can substitute for G beta gamma subunits. It further implies that G alpha subunits are tethered to Golgi membranes by posttranslational modifications (e.g., palmitoylation) or by binding to another protein(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号