首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Four genes encoding alcohol dehydrogenase (Adh) isozymes in the thermotolerant yeast Kluyveromyces marxianus, a potent candidate for ethanol production at high temperatures, were investigated. Of these, KmADH3 and KmADH4 were cloned and sequenced, and their deduced amino acid sequences were compared with those of KmAdh1 and KmAdh2 and other Adhs of Kluyveromyces lactis and Saccharomyces cerevisiae. The four KmAdhs had high sequence similarity, though KmAdh3 and KmAdh4 possessed an amino-terminal extension as a mitochondrial targeting sequence, and appear to belong to the zinc-containing Adh family. These results and the results of Southern blot experiments suggest that there are at least four Adh isozymes in K. marxianus, two cytoplasmic enzymes and two mitochondrial enzymes. The expression profile revealed that KmADH genes are differently expressed depending on growth phase and carbon source, suggesting that these highly homologous Adhs play distinctive roles in cells.  相似文献   

2.
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.  相似文献   

3.
We have identified five acyl coenzyme A (CoA) oxidase isozymes (Aox1 through Aox5) in the n-alkane-assimilating yeast Yarrowia lipolytica, encoded by the POX1 through POX5 genes. The physiological function of these oxidases has been investigated by gene disruption. Single, double, triple, and quadruple disruptants were constructed. Global Aox activity was determined as a function of time after induction and of substrate chain length. Single null mutations did not affect growth but affected the chain length preference of acyl-CoA oxidase activity, as evidenced by a chain length specificity for Aox2 and Aox3. Aox2 was shown to be a long-chain acyl-CoA oxidase and Aox3 was found to be active against short-chain fatty acids, whereas Aox5 was active against molecules of all chain lengths. Mutations in Aox4 and Aox5 resulted in an increase in total Aox activity. The growth of mutant strains was analyzed. In the presence of POX1 only, strains did not grow on fatty acids, whereas POX4 alone elicited partial growth, and the growth of the double POX2-POX3-deleted mutant was normal excepted on plates containing oleic acid as the carbon source. The amounts of Aox protein detected by Western blotting paralleled the Aox activity levels, demonstrating the regulation of Aox in cells according to the POX genotype.  相似文献   

4.
Transglucosyl-amylase was purified 96-fold and partially characterized. The Km value with dextrin as substrate was 9.1 mg/ml. Glycerol, an acceptor of d-glucose, appeared to inhibit dextrin hydrolysis noncompetitively. The energy of activation of the enzyme was 7,920 cal/mole. Indirect determinations showed that synthesis of d-glucosyl glycerol was significantly affected by the nature of the amylaceous substrate. Glucosyl-glycerol synthesis did not increase as incubation temperature was raised from 50 to 60 C. Direct determinations by gas-liquid chromatography indicated that the synthesis of glucosyl glycerol, as a function of the concentration of either enzyme, substrate, or glycerol, traced a curvilinear path approaching 15 mg/ml as the maximum. When enzyme, substrate, and glycerol at high concentrations were varied in all possible combinations, however, conditions for producing as much as 47.5 mg/ml of glucosyl glycerol were established.  相似文献   

5.
The genes for the alkane-inducible monooxygenase system of the yeast Candida tropicalis, namely a cytochrome P450alk (P450alk) and a NADPH cytochrome P450 oxidoreductase (NCPR) gene, were transferred in Saccharomyces cerevisiae. The P450alk gene was expressed in this host with the help of the yeast alcohol dehydrogenase I (ADHI) promoter and terminator, whereas the NCPR gene could be expressed with its own structural elements. The presence of P450alk in S. cerevisiae microsomal fractions resulted in a new acquired lauric acid terminal hydroxylation activity. Moreover, the same activity, coupled with the appearance of 12-hydroxylauric acid derivatives, could be obtained by the addition of lauric acid to intact cells expressing P450alk. The coordinate expression of the P450alk and NCPR genes in S. cerevisiae elevated the turnover rate of the P450alk monooxygenase activity about 2-fold.  相似文献   

6.
热带假丝酵母细胞内pH的测定及其与生长代谢活性的关系   总被引:3,自引:0,他引:3  
应用荧光探针5(6)-双醋酸羧基荧光素 (Carboxyfluorescein diacetate) 测定了产长链二元酸热带假丝酵母 (Candida tropicalis) 细胞内pH (pHi) 值,确定了该探针载入C. tropicalis细胞的适宜条件。用摇瓶培养C. tropicalis细胞,考察了细胞外pH和生长碳源对pHI的影响,实验结果表明:细胞外pH对pHI略有影响,而生长碳源对pHI的影响略为明显。利用5L发酵罐进一步研究了细胞生长代谢活性与pHi的关系,结果表明:细胞比生长速率、CO2比生产速率和葡萄糖比消耗速率与pHi变化密切相关,pHI的增加伴随着细胞生长活力的增加,反之亦然。在pH6.0条件下用葡萄糖和醋酸钠共作碳源培养C. tropicalis细胞时,测得的pHI值维持在5.72~6.15范围内。  相似文献   

7.
Transglucosyl-amylase was purified 96-fold and partially characterized. The K(m) value with dextrin as substrate was 9.1 mg/ml. Glycerol, an acceptor of d-glucose, appeared to inhibit dextrin hydrolysis noncompetitively. The energy of activation of the enzyme was 7,920 cal/mole. Indirect determinations showed that synthesis of d-glucosyl glycerol was significantly affected by the nature of the amylaceous substrate. Glucosyl-glycerol synthesis did not increase as incubation temperature was raised from 50 to 60 C. Direct determinations by gas-liquid chromatography indicated that the synthesis of glucosyl glycerol, as a function of the concentration of either enzyme, substrate, or glycerol, traced a curvilinear path approaching 15 mg/ml as the maximum. When enzyme, substrate, and glycerol at high concentrations were varied in all possible combinations, however, conditions for producing as much as 47.5 mg/ml of glucosyl glycerol were established.  相似文献   

8.
9.
10.
Alkane oxidation in Candida tropicalis   总被引:3,自引:0,他引:3  
  相似文献   

11.
Characteristics of trehalase in Candida tropicalis   总被引:2,自引:0,他引:2  
  相似文献   

12.
Candida tropicalis XY-19是一株具有优良乙醇发酵性能的发酵木糖酵母,其发酵葡萄糖产乙醇性能与目前酒精工业生产菌种--安琪酒精酵母相近,但XY-19的耐乙醇性能远比安琪酒精酵母差,XY-19在含有超过7%(v/v)乙醇的培养基中不能生长。以XY-19为出发菌株,经紫外线诱变获得了5株能在7.5%(v/v)乙醇的培养基中旺盛生长的突变株,经Co-60诱变获得了8株能在含8%(v/v)乙醇的培养基中旺盛生长的突变株。然后,以紫外线诱变得到的5株菌和Co-60诱变得到的8株菌及耐乙醇性能较好的酿酒酵母(S.cerevisae Angel,S.cerevisae4608和S.cerevisae172)为出发菌株,经过4轮Genome shuffling结合木糖乙醇梯度平板的筛选,获得了4株(G3-13,G3-18,G3-57和G3-60)能够在12%乙醇平板上生长的菌株,其乙醇耐受性比野生菌株XY-19提高了71%,为将XY-19进一步开发成纤维质乙醇发酵的生产菌种奠定基础。本研究结果进一步体现了Genome shuffling技术在改良如乙醇耐受性等多基因控制性状上的突出优势,为工业生产菌种的快速有效改良提供了一种有效的方法。  相似文献   

13.
Calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae are compared for glucose fermentation. Immobilized C. tropicalis cells showed a slight morphological alteration during ethanol production at 40 degrees C, but their fermentation capacity was reduced by 25%. Under immobilization conditions, the two species demonstrated two different mathematical patterns when the relationship between growth rate, respiration rate, and ethanol tolerance was assessed. The interspecific difference in behavior of immobilized yeast cells is mainly due to their natural metabolic preference. The production of CO(2) by calcium alginate-immobilized C. tropicalis, as well as the lower supply of oxygen to the cells, are the major factors that reduce ethanol production.  相似文献   

14.
Human peripheral monocytes (MO), neutrophils (PMN), and lymphocytes (PBL) were tested for their ability to kill Candida tropicalis. With incubation times between 30 min and 2 h, unstimulated MO and PMN, but not PBL, were efficient killers of C. tropicalis. Both leukocyte subsets were able to kill at minimum 2.5 1 effector to target ratios. Pre-incubation of MO for 24 h with interferon-gamma or tumor necrosis factor (TNF) increased their ability to kill yeast targets. TNF alone had no effect on C. tropicalis targets at concentrations up to 1000 U/ml. PBL activated for 4 d with interleukin-2 did not kill yeast targets. PMN exhibited more cytocidal efficiency per cell than MO in these assays. Direct contact of effectors and targets was required; no significant killing by PMN or MO supernatants was measured. PMN-mediated killing, but not MO killing, was inhibited by a mixture of catalase and Superoxide dismutase suggesting that oxygen-dependent killing mechanisms were partially responsible for candidacidal activity.  相似文献   

15.
Using stepwise extraction of chromatin from Candida tropicalis by NaCl (0.1-1.0 M) the protein dissociated by 0.3 and 0.6 M NaCl (fractions 0.3 and 0.6) possessing the DNAase activity were obtained. These DNAases are activated by Mg2+ and cause preferential hydrolysis of heat-denaturated DNA. Fraction 0.3 DNAase has a maximum at neutral values of pH (around 7.0) and causes endonucleolytic hydrolysis of DNA. Fraction 0.6 DNAase causes exonucleolytic hydrolysis of DNA but a maximum at alkaline pH (8.0). The properties of isolated chromatin DNAases of Candida tropicalis differ from those of the known DNAases of the yeast Saccharomyces cerevisiae.  相似文献   

16.
Isolation of Candida tropicalis auxotrophic mutants   总被引:3,自引:0,他引:3  
An enrichment scheme using nystatin was designed for the isolation of auxotrophic mutants from the diploid-alkane-utilizing yeast Candida tropicalis. A collection of 194 auxotrophs representing 7 phenotypes was isolated. One class of mutants was identified as having a defect in histidinol dehydrogenase activity and a second class of mutants was identified as having a defect in orotidine monophosphate decarboxylase activity. These strains are good candidates to be carrying mutations corresponding to the HIS4 and URA3 genes of Saccharomyces cerevisiae.  相似文献   

17.
18.
19.
Candida species exhibit a variety of ploidy states and modes of sexual reproduction. Most species possess the requisite genes for sexual reproduction, recombination, and meiosis, yet only a few have been reported to undergo a complete sexual cycle including mating and sporulation. Candida albicans, the most studied Candida species and a prevalent human fungal pathogen, completes its sexual cycle via a parasexual process of concerted chromosome loss rather than a conventional meiosis. In this study, we examine ploidy changes in Candida tropicalis, a closely related species to C. albicans that was recently revealed to undergo sexual mating. C. tropicalis diploid cells mate to form tetraploid cells, and we show that these can be induced to undergo chromosome loss to regenerate diploid forms by growth on sorbose medium. The diploid products are themselves mating competent, thereby establishing a parasexual cycle in this species for the first time. Extended incubation (>120 generations) of C. tropicalis tetraploid cells under rich culture conditions also resulted in instability of the tetraploid form and a gradual reduction in ploidy back to the diploid state. The fitness levels of C. tropicalis diploid and tetraploid cells were compared, and diploid cells exhibited increased fitness relative to tetraploid cells in vitro, despite diploid and tetraploid cells having similar doubling times. Collectively, these experiments demonstrate distinct pathways by which a parasexual cycle can occur in C. tropicalis and indicate that nonmeiotic mechanisms drive ploidy changes in this prevalent human pathogen.  相似文献   

20.
Recombination after protoplast fusion in the yeast Candida tropicalis   总被引:6,自引:0,他引:6  
Candida tropicalis protoplasts obtained by snail enzyme treatment were induced to fuse by the use of polyethylene-glycol. Heterokaryons formed by two auxotrophic strains were selected by complementation on minimal medium. These heterokaryons were unstable and readily dissociated into their nuclear components. Under appropriate conditions, the parental nuclei of an heterokaryon fused. The homokaryon so obtained was unstable and segregated into various types of auxotrophic and prototrophic recombinants.List of Abbreviations Used MM minimal medium - YEA yeast extract agar (complete medium) - YPGT yeast-peptone-glucosethiol (medium for protoplast preparation) - PTP medium for cell pretreatment (used before the action of snail enzyme) - PEG polyethylene glycol - p-FPA para-fluorophenylalanine - 5-FC 5-fluorocytosine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号