首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Microphotometric measurements are used to investigate the functional properties of Ca2+-sequestering smooth endoplasmic reticulum (SER) in leech photoreceptors. 10-30 intact cells are mounted in a perfusion chamber, placed between crossed polarizers in a microphotometer, and permeabilized by saponin treatment. Subsequent perfusion with solutions containing Ca2+, MgATP, and oxalate leads to Ca uptake by SER. When the solubility product of Ca-oxalate is exceeded in the SER, birefringent Ca-oxalate precipitates form in the cisternae, leading to a large increase in the optical signal recorded from the preparation. The rate of increase in light intensity is used to measure the rate of Ca uptake. Ca uptake rate is linear with time over much of its course, can be switched on/off by the addition/withdrawal of Ca2+, ATP, or oxalate to/from the medium, and is inhibited by mersalyl and tetracaine. The Ca uptake mechanism has a high specificity for MgATP (KM,MgATP is approximately 0.8 mM). Uptake rates observed with dATP, GTP, UTP, ITP, and CTP are only 20-30% of the rate measured in ATP. The Ca pump has a high affinity for Ca2+ ions: the threshold for activation of the pump is approximately 5 x 10(-8) M, the apparent KM,Ca is approximately 4 x 10(-7) M. When Na+ or Li+ is substituted for K+, Ca uptake rate is decreased by 40-50%. The results show that the Ca2+-sequestering SER in leech photoreceptors shares some basic properties with skeletal muscle sarcoplasmic reticulum and supports the idea that certain subregions of the SER in invertebrate photoreceptors function as effective Ca2+ sinks/buffers close to the plasmalemma.  相似文献   

2.
In Hirudo medicinalis an extensive and highly elaborate three dimensional network of smooth endoplasmic reticulum cisternae is found in very close structural relationship to the receptive (microvillar) membrane, as reported for many other invertebrates. A variant of the potassium pyroantimonate technique showed that these submicrovillar endoplasmic reticulum cisternae (SMC) and mitochondria are major intracellular calcium stores. Furthermore, using saponine-skinned photoreceptors for an in situ accumulation experiment, calcium oxalate precipitates in SMC demonstrate that this organelle is able to accumulate Ca2+ from a concentration of 2 x 10(-5) M, when ATP, Mg2+, and oxalate ions are present in the accumulation medium. This result provides direct evidence for the hypothesis that SMC may play a particularly important role in the regulation of intracellular ionized calcium in invertebrate photoreceptor cells. Morphological evidence supports this view.  相似文献   

3.
Monospecific antibodies to an intracellular membrane-bound Ca2+-ATPase were used to localize the enzyme in PtK-cells in interphase and in mitosis as well. In interphase the protein is distributed as small dots and rods in the cytoplasm with an increased concentration around the nucleus. Neither the plasma membrane nor the nuclear envelope are stained. In mitotic cells the Ca2+-ATPase is localized around the spindle rather than in it. The results are in agreement with the proposed function of enzyme as an essential part of the intracellular Ca2+-regulating system controlling Ca2+ in the respective domains of the cell.  相似文献   

4.
Global Ca2+ transients have been observed to precede nuclear envelope breakdown and the onset of anaphase in Swiss 3T3 fibroblasts in 8% (vol/vol) FBS. The occurrence of these Ca2+ transients was dependent on intracellular stores. These Ca2+ transients could be (a) abolished by serum removal without halting mitosis, and (b) eliminated by increasing intracellular Ca2+ buffering capacity through loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) buffer, via the tetra(acetoxymethyl) ester, without hindering the transition into anaphase. Microinjection of sufficient concentrations of BAPTA buffer could block nuclear envelope breakdown. Pulses of Ca2+ generated by flash photolysis of intracellularly trapped nitr-5, a "caged" Ca2+, could precipitate precocious nuclear envelope breakdown in prophase cells. In metaphase cells, photochemically generated Ca2+ pulses could cause changes in the appearance of the chromosomes, but the length of time required for cells to make the transition from metaphase to anaphase remained essentially unchanged regardless of whether a Ca2+ pulse was photoreleased during metaphase. The results from these photorelease experiments were not dependent on the presence of serum in the medium. Discharging intracellular Ca2+ stores with ionomycin in the presence of 1.8 mM extracellular Ca2+ doubled the time for cells to pass from late metaphase into anaphase, whereas severe Ca2+ deprivation by treatment with ionomycin in EGTA-containing medium halted mitosis. Our results collectively indicate that Ca2+ is actively involved in nuclear envelope breakdown, but Ca2+ signals are likely unnecessary for the metaphase-anaphase transition in Swiss 3T3 fibroblasts. Additional studies of intracellular Ca2+ concentrations in mitotic REF52 and PtK1 cells revealed that Ca2+ transients are not observed at all mitotic stages in all cells. The absence of observable global Ca2+ transients, where calcium buffers can block and pulses of Ca2+ can advance mitotic stages, may imply that the relevant Ca2+ movements are too local to be detected.  相似文献   

5.
Cellular mechanisms controlling smooth muscle cells (SMCs) phenotypic modulation are largely unknown. Intracellular Ca2+ movements are essential to ensure SMC functions; one of the roles of Ca2+ is to regulate calcineurin, which in turn induces nuclear localization of the nuclear factor of activated T-cell (NFAT). In order to investigate, during phenotypic differentiation of SMCs, the effect of calcineurin inhibition on NFAT2 nuclear translocation, we used a culture model of SMC differentiation in serum-free conditions. We show that the treatment of cultured SMC with the calcineurin inhibitor cyclosporine A induced their dedifferentiation while preventing their differentiation. These findings suggest that nuclear translocation of NFAT2 is dependent of calcineurin activity during the in vitro SMC differentiation kinetic and that the nuclear presence of NFAT2 is critical in the acquisition and maintenance of SMC differentiation.  相似文献   

6.
7.
A special structural pattern of the smooth endoplasmic reticulum (SER) has been observed in the kidney of the snail Cryptomphalus aspersa. Two types of cells (clear and dark) cover the foldings of the renal sac; the dark cells are by far the most numerous. A cisterna of SER enveloping the nucleus appears invariably in both types of cells, with no disruptions, or small ones (from 50 to 90 nm) along its profile. The layer of cytoplasm lodged between the external nuclear membrane and this cisterna is found invariably to be from 0-20 to 0-25 mum in width. Glycogen is abundant in the cytoplasm as alpha particles, and also in the nucleus, but as beta particles. It is noteworthy that absolutely no glycogen is present in the layer of cytoplasm lodged between the nuclear membrane and the surrounding SER envelope. Long profiles of SER are also observed closely approaching and parallel to the plasma membrane of the dark cells. Considering the role of SER in glycogen metabolism in the kidney of the snail, the possible function of these cisternae as a support system ofr enzymes involved in the metabolism of glucides is discussed.  相似文献   

8.
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.  相似文献   

9.
心肌细胞核Ca^2+库特点及其调节的离体研究   总被引:1,自引:0,他引:1  
To investigate the regulation of Ca2+ in the isolated cardiac nuclei from rats which may illuminated the mechanism of nuclear calcium transport system. Elocity and isopyknic gradient centrifugation were employed to fractionate rat cardiac nuclei. Then fluo-4 confocal microscopy techniques was used to verify the changes of nuclear Ca2+. There are calcium-dependent Ca2+ uptake in the cardiac nuclear obtained from normal rats. The accumulation Ca2+ of cardiac nuclei in vitro from the incubating medium were not consistent with free [Ca2+] in incubating medium. The nuclear envelope was initially loaded with Ca2+ (1 mmol/L ATP and approximately 100 nmol/L Ca2+), Adequate Ca2+ loading was next confirmed by imaging the nuclear envelope and nucleoplasm. Exposure of Ca2+ -loaded nuclei to IP3, ryanodine or ryanodine + thapsigargin, respectively, resulted in a rapid and transient elevation of nucleoplasmic Ca2+ free concentration, this effects were abolished by pretreatment of cardiac nuclei with Ca2+ -ATPase inhibitor thapsigargin. Thapsigargin and IP3 receptor antagonist heparin induced nucleoplasmic Ca2+ free concentration decrease. Fluorescence experiments indicated that both ryanodine receptors and Ca2+ -ATPase were distributed in the outer layer of nuclear envelope, and inositol 1,4,5-trisphosphate receptors mainly dispersively localized at inner layer of nuclear envelope. The present study demonstrates that nuclear calcium were regulated by free Ca2+, IP3 and ryanodine. The results suggested calcium transport system might be present in the myocardial nuclei, the myocardial nuclei might served as one of calcium pools in myocardial cell.  相似文献   

10.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

11.
F Zorzato  A Chu    P Volpe 《The Biochemical journal》1989,261(3):863-870
The junctional face membrane plays a key role in excitation-contraction coupling in skeletal muscle. A protein of 350 kDa, tentatively identified as a component of the junctional feet, connects transverse tubules to terminal cisternae of sarcoplasmic reticulum [Kawamoto, Brunschwig, Kim & Caswell (1986) J. Cell Biol. 103, 1405-1414]. The membrane topology and protein composition of sarcoplasmic reticulum Ca2+-release channels of rabbit skeletal muscle were investigated using an immunological approach, with anti-(junctional face membrane) and anti-(350 kDa protein) polyclonal antibodies. Upon preincubation of the terminal cisternae with anti-(junctional face membrane) antibodies, Ca2+-ATPase and Ca2+-loading activities were not affected, whereas anti-(350 kDa protein) antibodies stimulated Ca2+-ATPase activity by 25% and inhibited Ca2+-loading activity by 50% (at an antibody/terminal cisternae protein ratio of 1:1). Specific photolabelling of terminal cisternae proteins with [14C]doxorubicin was prevented by both anti-(junctional face membrane) and anti-(350 kDa protein) antibodies. Stimulation of Ca2+ release by doxorubicin was prevented by both anti-(junctional face membrane) and anti-(350 kDa protein) antibodies. Half-maximal inhibition was obtained at an antibody/terminal cisternae protein ratio of 1:1. Kinetic measurements of Ca2+ release indicated that anti-(350 kDa protein) antibodies prevented Ca2+-induced Ca2+ release, whereas the ATP-stimulation and the inhibition by Mg2+ were not affected. These results suggest that: (i) Ca2+- and doxorubicin-induced Ca2+ release is mediated by Ca2+ channels which are selectively localized in the junctional face membrane; (ii) the 350 kDa protein is a component of the Ca2+-release channel in native terminal cisternae vesicles; and (iii) the Ca2+-activating site of the channel is separate from other allosteric sites.  相似文献   

12.
Light stimulation of invertebrate microvillar photoreceptors causes a large rapid elevation in Cai, shown previously to modulate the adaptational state of the cells. Cai rises, at least in part, as a result of Ins(1,4,5)P3-induced Ca2+ release from the submicrovillar endoplasmic reticulum (ER). Here, we provide evidence for Ca(2+)- induced Ca2+ release (CICR) in an insect photoreceptor. In situ microphotometric measurements of Ca2+ fluxes across the ER membrane in permeabilized slices of drone bee retina show that (a) caffeine induces Ca2+ release from the ER; (b) caffeine and Ins(1,4,5)P3 open distinct Ca2+ release pathways because only caffeine-induced Ca2+ release is ryanodine sensitive and heparin insensitive, and because caffeine and Ins(1,4,5)P3 have additive effects on the rate of Ca2+ release; (c) Ca2+ itself stimulates release of Ca2+ via a ryanodine-sensitive pathway; and (d) cADPR is ineffective in releasing Ca2+. Microfluorometric intracellular Ca2+ measurements with fluo-3 indicate that caffeine induces a persistent elevation in Cai. Electrophysiological recordings demonstrate that caffeine mimics all aspects of Ca(2+)-mediated facilitation and adaptation in drone photoreceptors. We conclude that the ER in drone photoreceptors contains, in addition to the Ins(1,4,5)P3-sensitive release pathway, a CICR pathway that meets key pharmacological criteria for a ryanodine receptor. Coexpression of both release mechanisms could be required for the production of rapid light-induced Ca2+ elevations, because Ca2+ amplifies its own release through both pathways by a positive feedback. CICR may also mediate the spatial spread of Ca2+ release from the submicrovillar ER toward more remote ER subregions, thereby activating Ca(2+)-sensitive cell processes that are not directly involved in phototransduction.  相似文献   

13.
Hyperactivated sperm motility is usually characterized by high-amplitude flagellar bends and asymmetrical flagellar beating. There is evidence that an inositol 1,4,5-trisphosphate (IP3) receptor-gated Ca2+ store in the base of the flagellum provides Ca2+ to initiate hyperactivation; however, the identity of the store was not known. Ca2+ stores are membrane-bounded organelles, and the only two membrane-bounded organelles found in this region of sperm are the redundant nuclear envelope (RNE) and mitochondria. Transmission electron micrographs revealed two different compartments of RNE, one enriched with nuclear pores and the other containing few pores but extensive membranous structures with enlarged cisternae. Immunolabeling showed that IP3 receptors and calreticulin are located in the region containing enlarged cisternae. In other cell types, mitochondria adjacent to Ca2+ stores are actively involved in modulating Ca2+ signals by taking up Ca2+ released from stores and also may respond by increasing production of NADH and ATP to support increased energy demand. Nevertheless, bull sperm did not show an increase in NADH when Ca2+ was released from intracellular stores by thapsigargin to induce hyperactivation. Consistently, no net increase in ATP production was detected when sperm were hyperactivated, although ATP was hydrolyzed at a greater rate. Furthermore, blocking Ca2+ efflux from mitochondria by CGP-37157, a specific inhibitor of the mitochondrial Na+/Ca2+ exchanger, did not inhibit the development of hyperactivated motility. We concluded that the intracellular Ca2+ store is the part of RNE that contains enlarged cisternae and that Ca2+ is released directly to the axoneme to trigger hyperactivated motility without the active participation of mitochondria.  相似文献   

14.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.  相似文献   

15.
Parotid acinar cells exhibit rapid cytosolic calcium signals ([Ca2+]i) that initiate in the apical region but rapidly become global in nature. These characteristic [Ca2+]i signals are important for effective fluid secretion, which critically depends on a synchronized activation of spatially separated ion fluxes. Apically restricted [Ca2+]i signals were never observed in parotid acinar cells. This is in marked contrast to the related pancreatic acinar cells, where the distribution of mitochondria has been suggested to contribute to restricting [Ca2+]i signals to the apical region. Therefore, the aim of this study was to determine the mitochondrial distribution and the role of mitochondrial Ca2+ uptake in shaping the spatial and temporal properties of [Ca2+]i signaling in parotid acinar cells. Confocal imaging of cells stained with MitoTracker dyes (MitoTracker Green FM or MitoTracker CMXRos) and SYTO dyes (SYTO-16 and SYTO-61) revealed that a majority of mitochondria is localized around the nucleus. Carbachol (CCh) and caged inositol 1,4,5-trisphosphate-evoked [Ca2+]i signals were delayed as they propagated through the nucleus. This delay in the CCh-evoked nuclear [Ca2+]i signal was abolished by inhibition of mitochondrial Ca2+ uptake with ruthenium red and Ru360. Likewise, simultaneous measurement of [Ca2+]i with mitochondrial [Ca2+] ([Ca2+]m), using fura-2 and rhod-FF, respectively, revealed that mitochondrial Ca2+ uptake was also inhibited by ruthenium red and Ru360. Finally, at concentrations of agonist that evoke[Ca2+]i oscillations, mitochondrial Ca2+ uptake, and a nuclear [Ca2+] delay, CCh also evoked a substantial increase in NADH autofluorescence. This autofluorescence exhibited a predominant perinuclear localization that was also sensitive to mitochondrial inhibitors. These data provide evidence that perinuclear mitochondria and mitochondrial Ca2+ uptake may differentially shape nuclear [Ca2+] signals but more importantly drive mitochondrial metabolism to generate ATP close to the nucleus. These effects may profoundly affect a variety of nuclear processes in parotid acinar cells while facilitating efficient fluid secretion.  相似文献   

16.
When Madin-Darby canine kidney (MDCK) cells were grown in low-Ca2+ medium (LCM) the trans-Golgi cisternae, like those of cells maintained in high-Ca2+ medium (HCM), showed discrete localization of reaction product after thiamine pyrophosphatase (TPPase) staining. After exposure to Brefeldin A (BFA, 5 microg/ml) in LCM at 19 degrees C, the Golgi body dispersed and reaction product was distributed to the nuclear envelope and endoplasmic reticulum. The Golgi body reassembled in cells shifted back to HCM at 37 degrees C, with or without BFA, suggesting that low temperature and LCM exert synergistic effects in aiding dispersal of the Golgi apparatus in the presence of BFA. However, these results appear to be more directly correlated with the lack of defined cell polarity. Cells in LCM are unpolarized and both the centrosomes and the Golgi body are sub-nuclear in position, in contrast to their location in HCM where both organelles lie above the nucleus. The effects of BFA on the disassembly of the Golgi body therefore suggest that MDCK cells grown in LCM at low temperature cells are comparable to those non-polarized cell lines that are sensitive to BFA.  相似文献   

17.
We report here that the inositol 1,4,5-trisphosphate (IP3) precursor, L-alpha-phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent molecule (1 microM) which activates the ryanodine-sensitive Ca2+ release channel from rabbit skeletal muscle terminal cisternae incorporated into a phospholipid bilayer. It also stimulates Ca2+ release from these membrane vesicles. Therefore, it may play a modulating role in excitation-contraction coupling. In the bilayer, PIP2 added on the cytoplasmic side increased the mean channel opening probability 2-12-fold in the presence and absence of physiological Mg2+ and ATP. From flux studies, PIP2-induced Ca2+ release, occurring through the ryanodine-sensitive Ca2+ release channel, displayed saturation kinetics. The rate of Ca2+ release induced by PIP2 was approximately greater than 50% slower than the rates induced by other agents (e.g. caffeine, Ca2+, ATP). PIP2, and not IP3, effectively elicited Ca2+ release from terminal cisternae. On the contrary, IP3, and not PIP2, specifically mediated Ca2+ release from dog brain cerebellum microsomes, where IP3 receptors are known to be found. The PIP2-induced Ca2+ release from muscle membranes was not dependent on medium [Ca2+] (from less than 10(-9) to approximately 10(-4) M). However, IP3 could activate the terminal cisternae Ca2+ channel in the bilayer when there was low Ca2+ (less than 10(-7) M). The data suggest that the ionic microenvironment around the Ca2+ channel may be different for observing the two phosphoinositide actions.  相似文献   

18.
Proliferation of smooth muscle cells (SMC) has a role in the development of cardiovascular diseases. We investigated the alteration of contractile signals in proliferating SMC by measuring the increase in intracellular [Ca(2+)] to endothelin-1 (ET-1), noradrenaline (NA), or angiotensin II (AgII). We found that the increase in intracellular [Ca(2+)] by NA or ET-1 decreased in proliferating SMC in comparison to growth-arrested SMC. The increase in intracellular [Ca(2+)] by AgII was stable between the cells. Immunoblotting of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) which are responsible for the mobilization of Ca(2+) by those vasoactive substances revealed that expression of IP(3)R type 1 and type 2 was decreased. Expression of IP(3)R type 3 was increased. The altered Ca(2+) signaling by the cell growth might involve the expression of IP(3)R subtypes.  相似文献   

19.
Ca2+ release from the envelope of isolated pancreatic acinar nuclei could be activated by nicotinic acid adenine dinucleotide phosphate (NAADP) as well as by inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose (cADPR). Each of these agents reduced the Ca2+ concentration inside the nuclear envelope, and this was associated with a transient rise in the nucleoplasmic Ca2+ concentration. NAADP released Ca2+ from the same thapsigargin-sensitive pool as IP3. The NAADP action was specific because, for example, nicotineamide adenine dinucleotide phosphate was ineffective. The Ca2+ release was unaffected by procedures interfering with acidic organelles (bafilomycin, brefeldin, and nigericin). Ryanodine blocked the Ca2+-releasing effects of NAADP, cADPR, and caffeine, but not IP3. Ruthenium red also blocked the NAADP-elicited Ca2+ release. IP3 receptor blockade did not inhibit the Ca2+ release elicited by NAADP or cADPR. The nuclear envelope contains ryanodine and IP3 receptors that can be activated separately and independently; the ryanodine receptors by either NAADP or cADPR, and the IP3 receptors by IP3.  相似文献   

20.
We have used Ca2+-sensitive fluorescent dyes to monitor intracellular Ca2+ during mitosis in one-cell mouse embryos. We find that fertilized embryos generate Ca2+ transients at nuclear envelope breakdown (NEBD) and during mitosis. In addition, fertilized embryos arrested in metaphase using colcemid continue to generate Ca2+ transients. In contrast, parthenogenetic embryos produced by a 2-h exposure to strontium containing medium do not generate detectable Ca2+ transients at NEBD or in mitosis. However, when parthenogenetic embryos are cultured continuously in strontium containing medium Ca2+ transients are detected in mitosis but not in interphase. This suggests that mitotic Ca2+ transients are detected in the presence of an appropriate stimulus such as fertilization or strontium. The Ca2+ transient detected in fertilized embryos is not necessary for inducing NEBD since parthenogenetic embryos undergo nuclear envelope breakdown (NEBD). Also the first sign that NEBD is imminent occurs several minutes before the Ca2+ transient. The Ca2+ transient at NEBD appears to be associated with the nucleus since nuclear transfer experiments show that the presence of a karyoplast from a fertilized embryo is essential. Finally, we show that the intracellular Ca2+ chelator Bapta inhibits NEBD in fertilized and parthenogenetic embryos in a dose-dependent manner. These studies show that during mitosis there is an endogenous increase in Ca2+ releasing activity that leads to the generation of Ca2+ transients specifically during mitosis. The ability of Ca2+ buffers to inhibit NEBD regardless of the presence of global Ca2+ transients suggests that the underlying cell cycle-associated Ca2+ releasing activity may take the form of localized Ca2+ transients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号