首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infectious hematopoietic necrosis virus (IHNV) is a well known rhabdoviral pathogen of salmonid fish in North America that has become established in Asia and Europe. On the Pacific coast of Russia, IHNV was first detected in hatchery sockeye from the Kamchatka Peninsula in 2001. Results of virological examinations of over 10,000 wild and cultured salmonid fish from Kamchatka during 1996 to 2005 revealed IHNV in several sockeye salmon Oncorhynchus nerka populations. The virus was isolated from spawning adults and from juveniles undergoing epidemics in both hatchery and wild sockeye populations from the Bolshaya watershed. No virus was detected in 2 other watersheds, or in species other than sockeye salmon. Genetic typing of 8 virus isolates by sequence analysis of partial glycoprotein and nucleocapsid genes revealed that they were genetically homogeneous and fell within the U genogroup of IHNV. In phylogenetic analyses, the Russian IHNV sequences were indistinguishable from the sequences of North American U genogroup isolates that occur throughout Alaska, British Columbia, Washington, and Oregon. The high similarity, and in some cases identity, between Russian and North American IHNV isolates suggests virus transmission or exposure to a common viral reservoir in the North Pacific Ocean.  相似文献   

2.
Infectious hematopoietic necrosis virus (IHNV) contains 3 major genogroups in North America with discreet geographic ranges designated as upper (U), middle (M), and lower (L). A comprehensive genotyping of 237 IHNV isolates from hatchery and wild salmonids in California revealed 25 different sequence types (a to y) all in the L genogroup; specifically, the genogroup contained 14 sequence types that were unique to individual isolates as well as 11 sequence types representing 2 or more identical isolates. The most evident trend was the phylogenetic and geographical division of the L genogroup into 2 distinct subgroups designated as LI and LII. Isolates within Subgroup LI were primarily found within waterways linked to southern Oregon and northern California coastal rivers. Isolates in Subgroup LII were concentrated within inland valley watersheds that included the Sacramento River, San Joaquin River, and their tributaries. The temporal and spatial patterns of virus occurrence suggested that infections among adult Chinook salmon in the hatchery or that spawn in the river are a major source of virus potentially infecting other migrating or resident salmonids in California. Serum neutralization results of the California isolates of IHNV corroborated a temporal trend of sequence divergence; specifically, 2 progressive shifts in which more recent virus isolates represent new serotypes. A comparison of the estimates of divergence rates for Subgroup LI (1 x 10(-5) mutations per nucleotide site per year) indicated stasis similar to that observed in the U genogroup, while the Subgroup LII rate (1 x 10(-3) mutations per nucleotide site per year) suggested a more active evolution similar to that of the M genogroup.  相似文献   

3.
To better understand the role of vector transmission of aquatic viruses, we established an in vivo virus-parasite challenge specifically to address (1) whether Lepeophtheirus salmonis can acquire infectious haematopoietic necrosis virus (IHNV) after water bath exposure or via parasitizing infected Atlantic salmon Salmo salar and if so, define the duration of this association and (2) whether L. salmonis can transmit IHNV to naive Atlantic salmon and whether this transmission requires attachment to the host. Salmon lice which were water bath-exposed to 1 x 10(5) plaque-forming units (pfu) ml(-1) of IHNV for 1 h acquired the virus (2.1 x 10(4) pfu g(-1)) and remained IHNV-positive for 24 h post exposure. After parasitizing IHNV-infected hosts (viral titer in fish mucus 3.3 x 10(4) pfu ml(-1)) salmon lice acquired IHNV (3.4 x 10(3) pfu g(-1)) and remained virus-positive for 12 h. IHNV-positive salmon lice generated through water bath exposure or after parasitizing infected Atlantic salmon successfully transmitted IHNV, resulting in 76.5 and 86.6% of the exposed Atlantic salmon testing positive for IHNV, respectively. In a second experiment, only salmon lice that became IHNV-positive through water bath exposure transmitted IHNV to 20% of the naive fish, and no virus was transmitted when IHNV-infected salmon lice were cohabitated but restrained from attaching to naive fish. Under laboratory conditions, adult L. salmonis can acquire IHNV and transmit it to naive Atlantic salmon through parasitism. However, the ephemeral association of IHNV with L. salmonis indicates that the salmon louse act as a mechanical rather than a biological vector or reservoir.  相似文献   

4.
Aggregate hatchery production of Pacific salmon in the Kamchatka region of the Russian Federation is very low (< 0.5% of total harvest, with five hatcheries releasing approximately 41 M juvenile salmon annually), but contributions in certain rivers can be substantial. Enhancement programs in these rivers may strongly influence fitness and production of wild salmon. In this paper we document significant divergence in demographic traits in hatchery salmon populations in the Bolshaya River and we estimate the proportion of hatchery chum salmon in the total run in the Paratunka River to demonstrate the magnitude of enhancement in this system. We observed a reduction in the expression of life history types in hatchery populations (ranging from 1 to 9 types) compared to wild populations (17 types) of sockeye salmon in the Bolshaya River. We found similar trends in Chinook salmon in the same river system. This reduced life history diversity may make these fish less resilient to changes in habitat and climate. We estimate hatchery chum salmon currently contribute 17-45% to the natural spawning population in the Paratunka River. As hatchery fish increase in numbers at natural spawning sites, this hatchery production may affect wild salmon production. It is important to investigate the risk of introgression between hatchery and wild salmon that can lead to reduction in salmon fitness in Kamchatka rivers, as well as the potential of ecological interactions that can have consequences on status of wild salmon and overall salmon production in this region.  相似文献   

5.
Infectious hematopoietic necrosis (IHN) leads to periodic epidemics among certain wild and farmed fish species of the Northeast (NE) Pacific. The source of the IHN virus (IHNV) that initiates these outbreaks remains unknown; however, a leading hypothesis involves viral persistence in marine host species such as Pacific herring Clupea pallasii. Under laboratory conditions we exposed specific pathogen-free (SPF) larval and juvenile Pacific herring to 10(3) to 10(4) plaque-forming units (pfu) of IHNV ml(-1) by waterborne immersion. Cumulative mortalities among exposed groups were not significantly different from those of negative control groups. After waterborne exposure, IHNV was transiently recovered from the tissues of larvae but absent in tissues of juveniles. Additionally, no evidence of viral shedding was detected in the tank water containing exposed juveniles. After intraperitoneal (IP) injection of IHNV in juvenile herring with 10(3) pfu, IHNV was recovered from the tissues of sub-sampled individuals for only the first 5 d post-exposure. The lack of susceptibility to overt disease and transient levels of IHNV in the tissues of exposed fish indicate that Pacific herring do not likely serve a major epizootiological role in perpetuation of IHNV among free-ranging sockeye salmon Oncorhynchus nerka and farmed Atlantic salmon Salmo salar in the NE Pacific.  相似文献   

6.
The Duwamish estuary is an industrialized waterway located in Seattle, WA, USA. Despite a history of habitat loss, naturally produced juvenile Chinook salmon use the estuary. In addition to experiencing degraded habitat in the estuary, wild salmon growth may be affected by competition with more than three million hatchery fish released yearly into the river. Restoring habitat to benefit salmon in the Duwamish River is a priority for trustees of public resources, and a number of wetland restoration sites have been created there. We tested the function of restored sites in the Duwamish estuary for juvenile Chinook salmon by comparing fish densities from enclosure nets or beach seines at three paired restored/un-restored sites and by applying environmental and diet data to a bioenergetics model. We also examined temporal and diet overlap of wild juvenile Chinook salmon with other salmon species and with hatchery-reared Chinook salmon using non-metric multidimensional scaling (NMDS). At a brackish upstream site with a relatively large opening to the river, we found higher densities of juvenile Chinook salmon at the restored site. NMDS results indicated that juvenile Chinook salmon fed on different taxa at the restored sites than at the reference sites. However, modeled growth was similar at restored and reference sites. Co-occurring juvenile chum and Chinook salmon fed differently, with chum eating smaller prey, and Chinook salmon eating larger prey. Co-occurring hatchery and wild juvenile Chinook salmon had similar diets, indicating that they may compete for prey. However, modeled growth was positive and did not differ between hatchery and wild fish, suggesting that food was not limiting. Bioenergetics models indicated that overall juvenile Chinook salmon growth potential at the brackish water site was consistently higher than at more saline sites. Our results suggest that restoration sites in the Duwamish estuary that have larger access openings and are located in brackish water may have increased function over other configurations.  相似文献   

7.
In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.  相似文献   

8.
Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes ((34)S/(32)S, referred to as δ(34)S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ(34)S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs.  相似文献   

9.
Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.  相似文献   

10.
About 31% of salmon harvested in Alaska comes from the hatchery production of hundreds of millions of pink and chum salmon and smaller numbers of sockeye, Chinook, and coho salmon. The numbers of hatchery-reared juveniles released in some areas are greater than the numbers of juveniles from wild populations. However, virtually nothing is known about the effects of hatchery fish on wild populations in Alaska. Possible effects of these interactions can be inferred from studies of salmonids in other areas, from studies of other animals, and from theory. Numerous studies show a complex relationship between the genetic architecture of a population and its environment. Adaptive responses to nature and anthropogenic selection can be influenced by variation at a single gene, or more often, by the additive effects of several genes. Studies of salmonids in other areas show that hatchery practices can lead to the loss of genetic diversity, to shifts in adult run timing and earlier maturity, to increases in parasite load, to increases in straying, to altered levels of boldness and dominance, to shifts in juvenile out-migration timing, and to changes in growth. Controlled experiments across generations show, and theory predicts, that the loss of adaptive fitness in hatchery salmon, relative to fitness in wild salmon, can occur on a remarkably short time scale. All of these changes can influence survival and impose selective regimes that influence genetically based adaptive traits. The preservation of adaptive potential in wild populations is an important buffer against diseases and climate variability and, hence, should be considered in planning hatchery production levels and release locations. The protection of wild populations is the foundation for achieving sustained harvests of salmon in Alaska.  相似文献   

11.
Modern salmon hatcheries in Southeast Alaska were established in the 1970s when wild runs were at record low levels. Enhancement programs were designed to help rehabilitate depressed fisheries and to protect wild salmon stocks through detailed planning and permitting processes that included focused policies on genetics, pathology, and management. Hatcheries were located away from significant wild stocks, local sources were used to develop hatchery broodstocks, and juveniles are marked so management can target fisheries on hatchery fish. Initially conceived as a state-run system, the Southeast Alaska (SEAK) program has evolved into a private, non-profit concept centered around regional aquaculture associations run by fishermen and other stakeholders that pay for hatchery operations through landing fees and sale of fish. Today there are 15 production hatcheries and 2 research hatcheries in SEAK that between 2005 and 2009 released from 474 to 580 million (average 517 million) juvenile salmon per year. During this same period commercial harvest of salmon in the region ranged from 28 to 71 million salmon per year (average 49 million). Contributions of hatchery-origin fish to this harvest respectively averaged 2%, 9%, 19%, 20%, and 78% for pink, sockeye, Chinook, coho, and chum salmon. Both hatchery and wild salmon stocks throughout much of Alaska have experienced high marine survivals since the 1980s and 1990s resulting in record harvests over the past two decades. Although some interactions between hatchery salmon and wild salmon are unavoidable including increasing concerns over straying of hatchery fish into wild salmon streams, obvious adverse impacts from hatcheries on production of wild salmon populations in this region are not readily evident.  相似文献   

12.
Appraisal of hatchery-related effects on Pacific salmonids (Oncorhynchus spp.) is a necessary component of species conservation. For example, hatchery supplementation can influence species viability by changing genetic, phenotypic and life-history diversity. We analyzed time series data for seven salmonid taxa from the Klamath River basin, California, to investigate trajectories of wild and hatchery adult populations. Linear regression coupled with randomized permutations (n?=?99,999), two- tailed t tests, and Bayesian change point analysis were used to detect trends over time. Cross correlation was also used to evaluate relationships between wild and hatchery populations. The taxa of interest were spring, fall, and late-fall Chinook Salmon (O. tshawytscha); Coho Salmon (O. kisutch); Coastal Cutthroat Trout (O. clarki clarki); and summer and hybrid Steelhead Trout (O. mykiss). Significant decreases were detected for summer and hybrid Steelhead Trout. The proportion of wild fall Chinook has also significantly decreased concurrently with increases in hatchery returns. In comparison, returns of most Chinook and coho runs to the hatcheries, and fall Chinook strays to wild spawning areas from Iron Gate Hatchery have significantly increased since the 1970s. Increases were also detected for wild late-fall Chinook and spring Chinook adults. However, both of these were significantly correlated with Chinook Salmon returns to Trinity River Hatchery, suggesting augmentation by hatchery strays. Changes in abundances appeared related to changing ocean habitat conditions and hatchery practices. Our results suggest that anadromous salmonid populations in the Klamath River basin are becoming increasingly dependent on hatchery propagation, a pattern that can threaten population persistence.  相似文献   

13.
Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml−1. Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2×107 pfu fish−1 hour−1 one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k =  4.37 d−1 were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites.  相似文献   

14.
The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.  相似文献   

15.
Experiences of migratory species in one habitat may affect their survival in the next habitat, in what is known as carryover effects. These effects are especially relevant for understanding how freshwater experience affects survival in anadromous fishes. Here, we study the carryover effects of juvenile salmon passage through a hydropower system (Snake and Columbia rivers, northwestern United States). To reduce the direct effect of hydrosystem passage on juveniles, some fishes are transported through the hydrosystem in barges, while the others are allowed to migrate in‐river. Although hydrosystem survival of transported fishes is greater than that of their run‐of‐river counterparts, their relative juvenile‐to‐adult survival (hereafter survival) can be less. We tested for carryover effects using generalized linear mixed effects models of survival with over 1 million tagged Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (Salmonidae), migrating in 1999–2013. Carryover effects were identified with rear‐type (wild vs. hatchery), passage‐type (run‐of‐river vs. transported), and freshwater and marine covariates. Importantly, the Pacific Decadal Oscillation (PDO) index characterizing cool/warm (i.e., productive/nonproductive) ocean phases had a strong influence on the relative survival of rear‐ and passage‐types. Specifically, transportation benefited wild Chinook salmon more in cool PDO years, while hatchery counterparts benefited more in warm PDO years. Transportation was detrimental for wild Chinook salmon migrating early in the season, but beneficial for later season migrants. Hatchery counterparts benefited from transportation throughout the season. Altogether, wild fish could benefit from transportation approximately 2 weeks earlier during cool PDO years, with still a benefit to hatchery counterparts. Furthermore, we found some support for hypotheses related to higher survival with increased river flow, high predation in the estuary and plume areas, and faster migration and development‐related increased survival with temperature. Thus, pre‐ and within‐season information on local‐ and broad‐scale conditions across habitats can be useful for planning and implementing real‐time conservation programs.  相似文献   

16.
While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery‐reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand‐offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery‐reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F1 females and males was 1.11 (= 0.84) and 0.89 (= 0.56), respectively. RRS of hatchery‐reared fish (H) that mated in the wild with either hatchery or wild‐origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (= 0.92) and 0.94 (= 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild‐origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild.  相似文献   

17.
Understanding factors influencing survival of Pacific salmonids (Oncorhynchus spp.) is essential to species conservation, because drivers of mortality can vary over multiple spatial and temporal scales. Although recent studies have evaluated the effects of climate, habitat quality, or resource management (e.g., hatchery operations) on salmonid recruitment and survival, a failure to look at multiple factors simultaneously leaves open questions about the relative importance of different factors. We analyzed the relationship between ten factors and survival (1980–2007) of four populations of salmonids with distinct life histories from two adjacent watersheds (Salmon and Scott rivers) in the Klamath River basin, California. The factors were ocean abundance, ocean harvest, hatchery releases, hatchery returns, Pacific Decadal Oscillation, North Pacific Gyre Oscillation, El Niño Southern Oscillation, snow depth, flow, and watershed disturbance. Permutation tests and linear mixed-effects models tested effects of factors on survival of each taxon. Potential factors affecting survival differed among taxa and between locations. Fall Chinook salmon O. tshawytscha survival trends appeared to be driven partially or entirely by hatchery practices. Trends in three taxa (Salmon River spring Chinook salmon, Scott River fall Chinook salmon; Salmon River summer steelhead trout O. mykiss) were also likely driven by factors subject to climatic forcing (ocean abundance, summer flow). Our findings underscore the importance of multiple factors in simultaneously driving population trends in widespread species such as anadromous salmonids. They also show that the suite of factors may differ among different taxa in the same location as well as among populations of the same taxa in different watersheds. In the Klamath basin, hatchery practices need to be reevaluated to protect wild salmonids.  相似文献   

18.
Recent studies suggest that hatchery-reared fish can have smaller brain-to-body size ratios than wild fish. It is unclear, however, whether these differences are due to artificial selection or instead reflect differences in rearing environment during development. Here we explore how rearing conditions influence the development of two forebrain structures, the olfactory bulb and the telencephalon, in juvenile Chinook salmon (Oncorhynchus tshawytscha) spawned from wild-caught adults. First, we compared the sizes of the olfactory bulb and telencephalon between salmon reared in a wild stream vs. a conventional hatchery. We next compared the sizes of forebrain structures between fish reared in an enriched NATURES hatchery and fish reared in a conventional hatchery. All fish were size-matched and from the same genetic cohort. We found that olfactory bulb and telencephalon volumes relative to body size were significantly larger in wild fish compared to hatchery-reared fish. However, we found no differences between fish reared in enriched and conventional hatchery treatments. Our results suggest that significant differences in the volume of the olfactory bulb and telencephalon between hatchery and wild-reared fish can occur within a single generation.  相似文献   

19.
We review studies of interactions between hatchery and wild Pacific salmon in the Russian Far East. This includes the role of hatchery practices that result in premature migration to the sea and increased mortality, and data on feeding and territorial competition between juveniles of hatchery and wild origin. In the course of downstream migration many juvenile hatchery salmon are eliminated by wild salmon predation. During the marine period, Japanese hatchery chum salmon (Oncorhynchus keta) distribution overlaps the distribution of Russian wild salmon. Consequently, replacement of wild populations by hatchery fishes, as a result of abundant juvenile hatchery releases combined with extensive poaching in spawning grounds, is apparent in some Russian rivers. Interactions between the populations occur in all habitats. The importance of conservation of wild salmon populations requires a more detailed study of the consequences of interactions between natural and artificially reared fishes.  相似文献   

20.
Ecological interactions between natural and hatchery juvenile salmon during their early marine residence, a time of high mortality, have received little attention. These interactions may negatively influence survival and hamper the ability of natural populations to recover. We examined the spatial distributions and size differences of both marked (hatchery) and unmarked (a high proportion of which are natural) juvenile Chinook salmon in the coastal waters of Oregon and Washington from May to June 1999–2009. We also explored potential trophic interactions and growth differences between unmarked and marked salmon. Overlap in spatial distribution between these groups was high, although catches of unmarked fish were low compared to those of marked hatchery salmon. Peak catches of hatchery fish occurred in May, while a prolonged migration of small unmarked salmon entered our study area toward the end of June. Hatchery salmon were consistently longer than unmarked Chinook salmon especially by June, but unmarked salmon had significantly greater body condition (based on length-weight residuals) for over half of the May sampling efforts. Both unmarked and marked fish ate similar types and amounts of prey for small (station) and large (month, year) scale comparisons, and feeding intensity and growth were not significantly different between the two groups. There were synchronous interannual fluctuations in catch, length, body condition, feeding intensity, and growth between unmarked and hatchery fish, suggesting that both groups were responding similarly to ocean conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号