首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing number of publications shows that cannabinoid receptor 1 (CB(1)) specific compounds might act in a CB(1) independent manner, including rimonabant, a potent CB(1) receptor antagonist. Opioids, cannabinoids and their receptors are well known for their overlapping pharmacological properties. We have previously reported a prominent decrease in μ-opioid receptor (MOR) activity when animals were acutely treated with the putative endocannabinoid noladin ether (NE). In this study, we clarified whether the decreased MOR activation caused by NE could be reversed by rimonabant in CB(1) receptor deficient mice. In functional [(35)S]GTPγS binding assays, we have elucidated that 0.1mg/kg of intraperitoneal (i.p.) rimonabant treatment prior to that of NE treatment caused further attenuation on the maximal stimulation of Tyr-d-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO), which is a highly specific MOR agonist. Similar inhibitory effects were observed when rimonabant was injected i.p. alone and when it was directly applied to forebrain membranes. These findings are cannabinoid receptor independent as rimonabant caused inhibition in both CB(1) single knockout and CB(1)/CB(2) double knockout mice. In radioligand competition binding assays we highlighted that rimonabant fails to displace effectively [(3)H]DAMGO from MOR in low concentrations and is highly unspecific on the receptor at high concentrations in CB(1) knockout forebrain and in their wild-type controls. Surprisingly, docking computational studies showed a favorable binding position of rimonabant to the inactive conformational state of MOR, indicating that rimonabant might behave as an antagonist at MOR. These findings were confirmed by radioligand competition binding assays in Chinese hamster ovary cells stably transfected with MOR, where a higher affinity binding site was measured in the displacement of the tritiated opioid receptor antagonist naloxone. However, based on our in vivo data we suggest that other, yet unidentified mechanisms are additionally involved in the observed effects.  相似文献   

2.
Cyclooxygenase 2 inhibitors (COX 2) such as parecoxib (par) and valdecoxib (val) are used in the treatment of neuropathic pain. Using the radioligand binding assay it was demonstrated that both the prodrug par as well as its active metabolite val have a specific affinity to the cannabinoid (CB) receptor measured in CB1-expressing HEK 293 cells and rat brain tissue. Agonist activity was detected by GTPγS assays, cAMP formation experiments and ex vivo modulation of glutamate and GABA release of the rat brain tissue. In comparison to the specific cannabinoid agonist, WIN 55,212-2, the two COX 2 inhibitors are about 2 orders of magnitude less potent. The data suggest that the analgesic effects of par and its metabolite val in Wistar rats may be at least partially mediated by a direct interaction with the CB1 receptors. The COX 2 inhibitors appear to be a hypothetically useful tool for add-on therapy of neuropathic pain.  相似文献   

3.
The anticonvulsant activities of cannabinoid compounds have been shown in various models of seizure and epilepsy. At least, part of antiseizure effects of cannabinoid compounds is mediated through calcium (Ca2+) channels. The L-type Ca2+ channels have been shown to be important in various epilepsy models. However, there is no data regarding the role of L-type Ca2+ channels in protective action of cannabinoids on acute and chronic models of seizure. In this study, the effects of cannabinoid compounds and L-type Ca2+ channels blockers, either alone or in combination were investigated using acute model of pentylenetetrazole (PTZ)-induced seizure in mice and chronic model electrical kindling of amygdala in rats. Pretreatment of mice with both cannabinoid CB1 receptor agonist arachidonyl-2′-chloroethylamide (ACEA) and endocannabinoid degradating enzyme inhibitor cyclohexylcarbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597) produced a protective effect against PTZ-induced seizure. Administration of various doses of the two L-type Ca2+ channel blockers verapamil and diltiazem did not alter PTZ-induced seizure threshold. However, co-administration of verapamil and either ACEA or URB597 attenuated the protective effect of cannabinoid compounds against PTZ-induced seizure. Also, pretreatment of mice with diltiazem blocked the anticonvulsant activity of both ACEA and URB597. Moreover, (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2), the non-selective cannabinoid CB1 and CB2 receptor agonist showed anticonvulsant effect in amygdala-kindled rats. However, co-administration of WIN55,212-2 and verapamil attenuated the protective properties of WIN55,212-2. Our results showed that the anticonvulsant activity of cannabinoid compounds is mediated, at least in part, by L-type Ca2+ channels in these two models of convulsion and epilepsy.  相似文献   

4.
We examined the occurrence of possible changes in mRNA expression and the functional activity of opioid receptors after acute in vivo and in vitro treatment with the putative endogenous cannabinoid noladin ether. While noladin ether (NE) demonstrates agonist activity at CB1 cannabinoid receptors, recent data indicate that NE acts as a full agonist at CB2 cannabinoid receptors too. Considering the functional interactions between opioids and cannabinoids, it is of interest to examine whether NE affects the opioid system. To that end, we studied the influence of NE on mu-opioid receptor (MOR) mRNA expression and MOR mediated G-protein signaling. We used real-time PCR and [35S]GTPgammaS binding assays to examine the changes of MOR mRNA levels and the capability of the mu-opioid agonist peptide ([D-Ala2,(NMe)Phe4,Gly5-ol]enkephalin (DAMGO) in activating regulatory G-proteins via MORs in forebrain membrane fractions of wild-type (w.t., CB1+/+) and CB1 receptor deficient transgenic mice (knockout, CB1-/-). We found, that the expression of MOR mRNAs significantly decreased both in CB1+/+ and CB1-/- forebrain after a single injection of NE at 1 mg/kg when compared to control. Consequently, MOR-mediated signaling is attenuated after acute in vivo treatment with NE in both CB1+/+ and CB1-/- mice. Inhibition on MOR mediated activation is observed after in vitro NE administration as well. Radioligand binding competition studies showed that the noticed effect of NE on MOR signaling is not mediated through MORs. Both in vivo and in vitro attenuations of NE can be antagonized by the CB2 selective antagonist SR144528. Taken together, our data suggest that the NE caused pronounced decrease in the activity of MOR is mediated via CB2 cannabinoid receptors.  相似文献   

5.
CB1-type cannabinoid receptors in the brain mediate effects of the drug cannabis. Anandamide and sn-2 arachidonylglycerol (2-AG) are putative endogenous ligands for CB1 receptors, but it is not known which cells in the brain produce these molecules. Recently, an enzyme which catalyses hydrolysis of anandamide and 2-AG, known as fatty acid amide hydrolase (FAAH), was identified in mammals. Here we have analysed the distribution of FAAH in rat brain and compared its cellular localization with CB1-type cannabinoid receptors using immunocytochemistry. High concentrations of FAAH activity were detected in the cerebellum, hippocampus and neocortex, regions of the rat brain which are enriched with cannabinoid receptors. Immunocytochemical analysis of these brain regions revealed a complementary pattern of FAAH and CB1 expression with CB1 immunoreactivity occurring in fibres surrounding FAAH-immunoreactive cell bodies and/or dendrites. In the cerebellum, FAAH was expressed in the cell bodies of Purkinje cells and CB1 was expressed in the axons of granule cells and basket cells, neurons which are presynaptic to Purkinje cells. The close correspondence in the distribution of FAAH and CB1 in rat brain and the complementary pattern of FAAH and CB1 expression at the cellular level provides important new evidence that FAAH may participate in cannabinoid signalling mechanisms of the brain.  相似文献   

6.
Most of the modulating effects of cannabinoids on pain are through putative cannabinoid CB1 and CB2 receptors. However, the involvement of other receptors is also suggested. Cannabinoid compounds with analgesic activity such as palmitoylethanolamide (PEA) show low affinity to CB1 and CB2 receptors, yet selectively activate GPR55 receptors. The objective of the present study was to evaluate the possible role of spinal CB1 and GPR55 receptors on antinociceptive activity of PEA in formalin test as well as in the spinal expression of IL1-β in rat. Intrathecal (i.t.) administration of PEA (1, 10 μg) significantly decreased both pain-related scores in formalin test and IL1-β expression in rat spinal cord. Pretreatment of rats with low doses of CB1 receptor antagonist/GPR55 receptor agonist AM251 (10, 100 ng; i.t.), did not attenuated the effect of PEA, yet even significantly increased the effect of PEA on IL1-β expression in rat spinal cord. Interestingly, i.t. administration of low doses of AM251 per se significantly decreased both pain related behavior and spinal IL1-β expression in formalin test. These findings suggest the possible involvement of receptors other than CB1 receptors in spinal pain pathways, such as GPR55, in pain modulating activity of cannabinoids.  相似文献   

7.
The CB(1) cannabinoid receptor antagonist SR-141716A (Rimonabant) markedly diminishes the behavioral effects of opiates and nicotine and has been an important tool to ascertain the role of cannabinoid receptors in drug addiction. The present goal was to determine the less-explored interaction of SR-141716A and d-amphetamine in neurochemical and behavioral assays. Additionally, the effect of the substituents and substitution patterns on the phenyl ring located at the 5 position of SR-141716A (4-chlorophenyl), and of the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2, was determined. SR-141716A, AM-251 (4-iodophenyl) and NIDA-41020 (4-methoxyphenyl) did not alter amphetamine-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine. MRI-8273-30-1 (4-fluorophenyl; 0.1-10 microM) attenuated amphetamine (3 microM)-evoked [(3)H]overflow, and MRI-8273-59 (3,4-dichlorphenyl; 0.01-10 microM) augmented amphetamine (0.3-3 microM)-evoked [(3)H]overflow. WIN-55,212-2 was without effect. In a locomotor activity experiment, SR-141716A and MRI-8273-30-1 did not alter amphetamine-induced hyperactivity. However, MRI-8273-59 (1-3 mg/kg) dose-dependently attenuated amphetamine (1 mg/kg)-induced hyperactivity. The present results suggest that SR-141716A is less efficacious to alter amphetamine effects than its reported efficacy to diminish the effects of opiates and nicotine. Modification of the 5-phenyl position of SR-141716A affords compounds that do interact with amphetamine in vitro and in vivo.  相似文献   

8.
Synthesis and pharmacological evaluation of a new series of cannabinoid receptor antagonists of indazole ether derivatives have been performed. Pharmacological evaluation includes radioligand binding assays with [3H]-CP55940 for CB1 and CB2 receptors and functional activity for cannabinoid receptors on isolated tissue. In addition, functional activity of the two synthetic cannabinoids antagonists 18 (PGN36) and 17 (PGN38) were carried out in the osteoblastic cell line MC3T3-E1 that is able to express CB2R upon osteogenic conditions. Both antagonists abolished the increase in collagen type I gene expression by the well-known inducer of bone activity, the HU308 agonist. The results of pharmacological tests have revealed that four of these derivatives behave as CB2R cannabinoid antagonists. In particular, the compounds 17 (PGN38) and 18 (PGN36) highlight as promising candidates as pharmacological tools.  相似文献   

9.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB(2) cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB(2) receptors in the brain need to be clarified. The aim of our work was to study the mu-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB(2) receptor antagonist SR144528 in brainstem of mice deficient in either CB(1) or CB(2) receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB(2) cannabinoid antagonist SR144528, suggesting a CB(2) receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [(35)S]GTPgammaS binding assay to analyze the capability of mu-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB(1) wild-type and CB(1) knockout mice after a single injection of SR144528 at 0.1mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB(1) wild-type and CB(1) knockout mice. In vitro addition of 1microM SR144528 caused a decrease in the maximal stimulation of DAMGO in [(35)S]GTPgammaS binding assays in CB(2) wild-type brainstem membranes whereas no significant changes were observed in CB(2) receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB(2) cannabinoid receptors.  相似文献   

10.
Neuroprotective effects have been described for many cannabinoids in several neurotoxicity models. However, the exact mechanisms have not been clearly understood yet. In the present study, antioxidant neuroprotective effects of cannabinoids and the involvement of the cannabinoid receptor 1 (CB1) were analysed in detail employing cell-free biochemical assays and cultured cells. As it was reported for oestrogens that the phenolic group is a lead structure for antioxidant neuroprotective effects, eight compounds were classified into three groups. Group A: phenolic compounds that do not bind to CB1. Group B: non-phenolic compounds that bind to CB1. Group C: phenolic compounds that bind to CB1. In the biochemical assays employed, a requirement of the phenolic lead structure for antioxidant activity was shown. The effects paralleled the protective potential of group A and C compounds against oxidative neuronal cell death using the mouse hippocampal HT22 cell line and rat primary cerebellar cell cultures. To elucidate the role of CB1 in neuroprotection, we established stably transfected HT22 cells containing CB1 and compared the protective potential of cannabinoids with that observed in the control transfected HT22 cell line. Furthermore, oxidative stress experiments were performed in cultured cerebellar granule cells, which were derived either from CB1 knock-out mice or from control wild-type littermates. The results strongly suggest that CB1 is not involved in the cellular antioxidant neuroprotective effects of cannabinoids.  相似文献   

11.
The presence of CB(2) receptors was reported in the rat basophilic cell line RBL-2H3 and N-palmitoylethanolamide was proposed as an endogenous, potent agonist of this receptor. We synthesized a series of 10 N-palmitoylethanolamide homologues and analogues, varying by the elongation of the fatty acid chain from caproyl to stearoyl and by the nature of the amide substituent, respectively, and evaluated the affinity of these compounds to cannabinoid receptors in the rat spleen, RBL-2H3 cells and CHO-CB(1) and CHO-CB(2) receptor-transfected cells. In rat spleen slices, CB(2) receptors were the predominant form of the cannabinoid receptors. No binding of [(3)H]SR141716A was observed. [(3)H]CP-55,940 binding was displaced by WIN 55,212-2 and anandamide. No displacement of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 by palmitoylethanolamide derivatives was observed in rat spleen slices. In RBL-2H3 cells, no binding of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 could be observed and conversely, no inhibitory activity of N-palmitoylethanolamide derivatives and analogues was measurable. These compounds do not recognize the human CB(1) and CB(2) receptors expressed in CHO cells. In conclusion, N-palmitoylethanolamide was, in our preparations, a weak ligand while its synthesized homologues or analogues were essentially inactive. Therefore, it seems unlikely that N-palmitoylethanolamide is an endogenous agonist of the CB(2) receptors but it may be a compound with potential therapeutic applications since it may act via other mechanisms than cannabinoid CB(1)-CB(2) receptor interactions.  相似文献   

12.
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior.  相似文献   

13.
A new class of cannabimimetic indoles, with 3-phenylacetyl or substituted 3-phenylacetyl substituents, has been prepared and their affinities for the cannabinoid CB1 and CB2 receptors have been determined. In general those compounds with a 2-substituted phenylacetyl group have good affinity for both receptors. The 4-substituted analogs have little affinity for either receptor, while the 3-substituted compounds are intermediate in their affinities. Two of these compounds, 1-pentyl-3-(2-methylphenylacetyl)indole (JWH-251) and 1-pentyl-3-(3-methoxyphenylacetyl)indole (JWH-302), have 5-fold selectivity for the CB1 receptor with modest affinity for the CB2 receptor. GTPgammaS determinations indicate that both compounds are highly efficacious agonists at the CB1 receptor and partial agonists at the CB2 receptor.  相似文献   

14.
A novel series of cannabinoid ligands with a structurally unique tri-aryl core has been designed, synthesized and assayed. Receptor binding assays show that these compounds possess CB2 receptor sub-type selectivity with binding affinities ranging from 1.07 (±0.05) for 7 to 4.77 (±0.57) nM for 6. The selectivity of the compounds was enhanced 9–600-fold for the CB2 receptor over the CB1 receptor. The results of our present study identify a novel, highly selective cannabinoid scaffold with a non-classical core.  相似文献   

15.
Retroanandamide (2f) and its 10 analogues (1a-e, 2a-e) were synthesized and evaluated for the cannabinoid receptor activation by a [35S]GTPgammaS binding assay using rat cerebellar membranes, and Chinese hamster ovary cell membranes expressing human CB2 receptors. The primary goal of the study was to develop cannabinoid receptor agonists having improved enzymatic stability compared to endogenous N-arachidonoyl ethanolamide (AEA). Furthermore, by reversing the amide bond of AEA, the formation of arachidonic acid would be prevented. Finally, an effect of the carbonyl carbon position on the cannabinoid receptor activity was explored by synthesizing retroanandamide analogues having different chain lengths (1a-e, C19; 2a-f, C20). All the synthesized compounds, except 2c, behaved as partial agonists for the both cannabinoid receptors. In rat brain homogenate, the reversed amides possessed significantly higher stability against FAAH induced degradation than AEA. Therefore, the reversed amide analogues of AEA may serve as enzymatically stable structural basis for the drug design based on the endogenous cannabinoids.  相似文献   

16.
In our ongoing program aimed at the design, synthesis, and biological evaluation of novel cannabinoid receptor ligands derived from olivetol and hexyl-resorcinol, we have designed a structural model for new derivatives on the basis of a previous study. Here we report the synthesis, binding, and molecular modeling studies of new potent compounds with high affinity toward CB(1) and CB(2) receptors. Compounds with amidic 'heads' with alkyloxy chains varying in length from 8 to 12 carbon atoms showed nanomolar affinity for both receptors, depending on the type of aromatic backbone. Two of the new compounds, although not very potent, exhibit selectivity for CB(1) receptors (CB(1)/CB(2)=0.07 and 0.08, respectively). Molecular modeling studies fitted this new class of cannabinoid ligands into a CB(1) receptor model, and the qualitative analysis of the results was in general agreement with the CB(1) affinity constants observed experimentally for these derivatives.  相似文献   

17.
To develop SAR at both the cannabinoid CB(1) and CB(2) receptors for 3-(1-naphthoyl)indoles bearing moderately electron withdrawing substituents at C-4 of the naphthoyl moiety, 1-propyl and 1-pentyl-3-(4-fluoro, chloro, bromo and iodo-1-naphthoyl) derivatives were prepared. To study the steric and electronic effects of substituents at the 8-position of the naphthoyl group, the 3-(4-chloro, bromo and iodo-1-naphthoyl)indoles were also synthesized. The affinities of both groups of compounds for the CB(1) and CB(2) receptors were determined and several of them were evaluated in vivo in the mouse. The effects of these substituents on receptor affinities and in vivo activity are discussed and structure-activity relationships are presented. Although many of these compounds are selective for the CB(2) receptor, only three JWH-423, 1-propyl-3-(4-iodo-1-naphthoyl)indole, JWH-422, 2-methyl-1-propyl-3-(4-iodo-1-naphthoyl)indole, the 2-methyl analog of JWH-423 and JWH-417, 1-pentyl-3-(8-iodo-1-naphthoyl)indole, possess the desirable combination of low CB(1) affinity and good CB(2) affinity.  相似文献   

18.
Two cannabinoid receptors, CB1 and CB2, are expressed in mammals, birds, reptiles, and fish. The presence of cannabinoid receptors in invertebrates has been controversial, due to conflicting evidence. We conducted a systematic review of the literature, using expanded search parameters. Evidence presented in the literature varied in validity, ranging from crude in vivo behavioural assays to robust in silico ortholog discovery. No research existed for several clades of invertebrates; we therefore tested for cannabinoid receptors in seven representative species, using tritiated ligand binding assays with [3H]CP55,940 displaced by the CB1-selective antagonist SR141716A. Specific binding of [3H]CP55,940 was found in neural membranes of Ciona intestinalis (Deuterstoma, a positive control), Lumbricusterrestris (Lophotrochozoa), and three ecdysozoans: Peripatoides novae-zealandiae (Onychophora), Jasus edwardi (Crustacea) and Panagrellus redivivus (Nematoda); the potency of displacement by SR141716A was comparable to measurements on rat cerebellum. No specific binding was observed in Actinothoe albocincta (Cnidaria) or Tethya aurantium (Porifera). The phylogenetic distribution of cannabinoid receptors may address taxonomic questions; previous studies suggested that the loss of CB1 was a synapomorphy shared by ecdysozoans. Our discovery of cannabinoid receptors in some nematodes, onychophorans, and crustaceans does not contradict the Ecdysozoa hypothesis, but gives it no support. We hypothesize that cannabinoid receptors evolved in the last common ancestor of bilaterians, with secondary loss occurring in insects and other clades. Conflicting data regarding Cnidarians precludes hypotheses regarding the last common ancestor of eumetazoans. No cannabinoid receptors are expressed in sponges, which probably diverged before the origin of the eumetazoan ancestor.  相似文献   

19.
Anandamide (N-arachidonoylethanolamine), an arachidonic acid derivative, is an endogenous ligand for both the brain-type (CB1-R) and spleen-type (CB2-R) cannabinoid receptors. We have previously demonstrated that preimplantation mouse embryos express mRNA for these receptors and that the periimplantation uterus contains the highest level of anandamide yet discovered in a mammalian tissue. We further demonstrated that 2-cell mouse embryos exposed to low levels of anandamide (7 nM) or other known cannabinoid agonists in culture exhibit markedly compromised embryonic development to blastocysts and that this effect is mediated by CB1-R. In contrast, the present study demonstrates that blastocysts exposed in culture to the same low levels of cannabinoid agonists exhibited accelerated trophoblast differentiation with respect to fibronectin-binding activity and trophoblast outgrowth. Again, these effects resulted from activation of embryonic CB1-R. There was a differential concentration-dependent effect of cannabinoids on the trophoblast, with an observed inhibition of differentiation at higher doses. These results provide evidence for the first time that cannabinoid effects are differentially executed depending on the embryonic stage and cannabinoid levels in the environment. Since uterine anandamide levels are lowest at the sites of implantation and highest at the interimplantation sites, the new findings imply that site-specific levels of anandamide and/or other endogenous ligands in the uterus may regulate implantation spatially by promoting trophoblast differentiation at the sites of blastocyst implantation.  相似文献   

20.
Enzymes for the biosynthesis and degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG) have been cloned and are the sn-1-selective-diacylglycerol lipases alpha and beta (DAGLalpha and beta) and the monoacylglycerol lipase (MAGL), respectively. Here, we used membranes from COS cells over-expressing recombinant human DAGLalpha to screen new synthetic substances as DAGLalpha inhibitors, and cytosolic fractions from wild-type COS cells to look for MAGL inhibitors. DAGLalpha and MAGL activities were assessed by using sn-1-[14C]-oleoyl-2-arachidonoyl-glycerol and 2-[3H]-arachidonoylglycerol as substrates, respectively. We screened known compounds as well as new phosphonate derivatives of oleic acid and fluoro-phosphinoyl esters of different length. Apart from the general lipase inhibitor tetrahydrolipstatin (orlistat) (IC50 approximately 60 nM), the most potent inhibitors of DAGLalpha were O-3640 [octadec-9-enoic acid-1-(fluoro-methyl-phosphoryloxymethyl)-propylester] (IC50 = 500 nM), and O-3841 [octadec-9-enoic acid 1-methoxymethyl-2-(fluoro-methyl-phosphinoyloxy)-ethyl ester] (IC50 = 160 nM). Apart from being almost inactive on MAGL, these two compounds showed high selectivity over rat liver triacylglycerol lipase, rat N-acylphosphatidyl-ethanolamine-selective phospholipase D (involved in anandamide biosynthesis), rat fatty acid amide hydrolase and human recombinant cannabinoid CB1 and CB2 receptors. Methylarachidonoyl-fluorophosphonate and the novel compound UP-101 [O-ethyl-O-p-nitro-phenyl oleylphosphonate] inhibited both DAGLalpha and MAGL with similar potencies (IC50 = 0.8-0.1 and 3.7-3.2 microM, respectively). Thus, we report the first potent and specific inhibitors of the biosynthesis of 2-AG that may be used as pharmacological tools to investigate the biological role of this endocannabinoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号