首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.  相似文献   

2.
The dbl oncogene product is the defining member of a family of onco-proteins known as Dbl guanine nucleotide exchange factors (GEFs) that facilitate the activation of the small GTP-binding proteins Cdc42, Rac, and Rho. Oncogenic activation of proto-Dbl occurs through loss of the amino-terminal 497 residues, rendering the protein constitutively active. Because both onco- and proto-Dbl contain the structural elements required for GEF activity (i.e. the Dbl homology (DH) and pleckstrin homology (PH) domains), it is thought that the amino terminus of proto-Dbl somehow inhibits the biochemical activity of the protein. To better understand the molecular basis of this regulation, we set forth to identify cellular proteins that preferentially bind the proto-oncogenic form of Dbl. We identified the molecular chaperone heat shock cognate protein (Hsc70) as a binding partner that preferentially interacts with the proto-oncogenic form of Dbl. Dbl is complexed with Hsc70 in transfected cells, as well as in native mouse brain extracts. The interaction between Hsc70 and proto-Dbl is mediated by at least two regions in Dbl, the aminoterminal spectrin homology domain (residues 224-417) and the pleckstrin homology domain (residues 711-808). Overexpression of a dominant negative Hsc70 mutant leads to activation of proto-Dbl GEF activity, indicating that the chaperone negatively regulates proto-Dbl function in vivo. We propose that Hsc70 attenuates Dbl activity by maintaining an inactive conformation in which the amino terminus is "folded over" the catalytic DH-PH domain.  相似文献   

3.
Synaptic transmission depends on the efficient loading of transmitters into synaptic vesicles by vesicular neurotransmitter transporters. The vesicular monoamine transporter-2 (VMAT2) is essential for loading monoamines into vesicles and maintaining normal neurotransmission. In an effort to understand the regulatory mechanisms associated with VMAT2, we have embarked upon a systematic search for interacting proteins. Glutathione-S-transferase pull-down assays combined with mass spectrometry led to the identification of the 70-kDa heat shock cognate protein (Hsc70) as a VMAT2 interacting protein. Co-immunoprecipitation experiments in brain tissue and heterologous cells confirmed this interaction. A direct binding was observed between the amino terminus and the third cytoplasmic loop of VMAT2, as well as, a region containing the substrate binding and the carboxy-terminal domains of Hsc70. Furthermore, VMAT2 and Hsc70 co-fractionated with purified synaptic vesicles obtained from a sucrose gradient, suggesting that this interaction occurs at the synaptic vesicle membrane. The functional significance of this novel VMAT2/Hsc70 interaction was examined by performing vesicular uptake assays in heterologous cells and purified synaptic vesicles from brain tissue. Recombinant Hsc70 produced a dose-dependent inhibition of VMAT2 activity. This effect was mimicked by the closely related Hsp70 protein. In contrast, VMAT2 activity was not altered in the presence of previously denatured Hsc70 or Hsp70, as well as the unrelated Hsp60 protein; confirming the specificity of the Hsc70 effect. Finally, a purified Hsc70 fragment that binds VMAT2 was sufficient to inhibit VMAT2 activity in synaptic vesicles. Our results suggest an important role for Hsc70 in VMAT2 function and regulation.  相似文献   

4.
During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1–induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase–deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1–induced Rac1 activation. Hsc70 was required for netrin-1–mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

5.
Apoptin, a protein from chicken anemia virus, selectively induces apoptosis of transformed or tumor cells, but not in normal cells. However, the mechanism of action of Apoptin is still not well understood. Using yeast two-hybrid and immunoprecipitation approaches, we found that Apoptin interacted with Heat shock cognate protein 70 (Hsc70). In vivo, Apoptin induced the translocation of endogenous Hsc70 from the cytoplasm to the nucleus, and both were co-localized in the nucleus. In addition, Apoptin induced Akt phosphorylation, which was markedly inhibited by Hsc70 knockdown, suggesting that Hsc70 may play a critical role in Apoptin-induced Akt phosphorylation. These findings help to further understand the molecular mechanism of Apoptin.  相似文献   

6.
We examined the cell death-inducing property of human Fas-associated factor 1 (hFAF1) in the heat shock signaling pathway. By employing co-immunoprecipitation and peptide mass fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we found that hFAF1 binds to the 70-kDa heat shock protein family (Hsc70/Hsp70). Interaction mapping indicated that the 82-180 sequence of hFAF1 directly binds to the N-terminal region containing sequence 1-120 of Hsc70/Hsp70. This binding is very tight regardless of ATP and heat shock treatment. Hsc70/Hsp70 and hFAF1 co-localized in the cytosol and nucleus and concentrated to the perinuclear region by heat shock treatment. We examined how hFAF1 regulates Hsp70 function, and found that hFAF1 inhibited the Hsp70 chaperone activity of refolding denatured protein substrates, accelerated heat shock-induced SAPK/JNK activation, and raised heat shock-induced cell death in a binding dependent manner. These results suggest that hFAF1 prevents cells from recovery after stress by binding to and inhibiting the chaperone activity of Hsp70.  相似文献   

7.
Lee YI  Kim SY  Cho CH  Seo M  Cho DH  Kwak SJ  Juhnn YS 《FEBS letters》2003,555(2):329-334
Individual cell types express a characteristic balance between heterotrimeric G protein alpha and betagamma subunits, but little is known about the regulatory mechanism. We systemically examined the regulatory mechanism in CHO cells. We found that expression of Galphas, Galphai2, and Galphaq proteins increased in direct proportion to the increase of Gbeta1gamma2 overexpressed transiently. Expression of Gbeta protein also increased following overexpression of Galphas, Galphai2, and Galphaq. The Gbetagamma overexpression stimulated degradation of Gbeta in contrast to reduction of Galphas degradation. We conclude that coordinate expression of the G protein subunits involves regulation of protein degradation via proteasome in CHO cells.  相似文献   

8.
We have examined the roles of Hsc70 and auxilin in the uncoating of clathrin-coated vesicles (CCVs) during neuronal endocytosis. We identified two peptides that inhibit the ability of Hsc70 and auxilin to uncoat CCVs in vitro. When injected into nerve terminals, these peptides inhibited both synaptic transmission and CCV uncoating. Mutation of a conserved HPD motif within the J domain of auxilin prevented binding to Hsc70 in vitro and injecting this mutant protein inhibited CCV uncoating in vivo, demonstrating that the interaction of auxilin with Hsc70 is critical for CCV uncoating. These studies establish that auxilin and Hsc70 participate in synaptic vesicle recycling in neurons and that an interaction between these proteins is required for CCV uncoating.  相似文献   

9.
Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents or synaptic vesicle exocytosis as measured in the Calyx of Held synapse. At 2-4 weeks of age, however, CSPalpha-deficient mice develop a progressive, fatal sensorimotor disorder. The neuromuscular junctions and Calyx synapses of CSPalpha-deficient mice exhibit increasing neurodegenerative changes, synaptic transmission becomes severely impaired, and the mutant mice die at approximately 2 months of age. Our data suggest that CSPalpha is not essential for the normal operation of Ca2+ channels or exocytosis but acts as a presynaptic chaperone that maintains continued synaptic function, raising the possibility that enhanced CSPalpha function could attenuate neurodegenerative diseases.  相似文献   

10.
A trimeric protein complex functions as a synaptic chaperone machine   总被引:12,自引:0,他引:12  
We identify a chaperone complex composed of (1) the synaptic vesicle cysteine string protein (CSP), thought to function in neurotransmitter release, (2) the ubiquitous heat-shock protein cognate Hsc70, and (3) the SGT protein containing three tandem tetratricopeptide repeats. These three proteins interact with each other to form a stable trimeric complex that is located on the synaptic vesicle surface, and is disrupted in CSP knockout mice. The CSP/SGT/Hsc70 complex functions as an ATP-dependent chaperone that reactivates a denatured substrate. SGT overexpression in cultured neurons inhibits neurotransmitter release, suggesting that the CSP/SGT/Hsc70 complex is important for maintenance of a normal synapse. Taken together, our results identify a novel trimeric complex that functions as a synapse-specific chaperone machine.  相似文献   

11.
Previous in vitro studies of cysteine-string protein (CSP) imply a potential role for the clathrin-uncoating ATPase Hsc70 in exocytosis. We show that hypomorphic mutations in Drosophila Hsc70-4 (Hsc4) impair nerve-evoked neurotransmitter release, but not synaptic vesicle recycling in vivo. The loss of release can be restored by increasing external or internal Ca(2+) and is caused by a reduced Ca(2+) sensitivity of exocytosis downstream of Ca(2+) entry. Hsc4 and CSP are likely to act in common pathways, as indicated by their in vitro protein interaction, the similar loss of evoked release in individual and double mutants, and genetic interactions causing a loss of release in trans-heterozygous hsc4-csp double mutants. We suggest that Hsc4 and CSP cooperatively augment the probability of release by increasing the Ca(2+) sensitivity of vesicle fusion.  相似文献   

12.
Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP(1-198) (full-length), CSP(1-112), and CSP(1-82) on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with G alpha(s) and increases steady-state GTP hydrolysis. CSP(1-198) modulation of G alpha(s) was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP(1-112) was Hsc70-SGT-independent. CSP(1-112) preferentially associated with the inactive GDP-bound conformation of G alpha(s). Consistent with the stimulation of GTP hydrolysis, CSP(1-112) increased guanine nucleotide exchange of G alpha(s). The interaction of native G alpha(s) and CSP was confirmed by coimmunoprecipitation and showed that G alpha(s) associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the beta2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of G alpha(s) and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.  相似文献   

13.
Influenza virus matrix protein 1 (M1) has been shown to play a crucial role in the virus replication, assembly and budding. We identified heat shock cognate protein 70 (Hsc70) as a M1 binding protein by immunoprecipitation and MALDI-TOF MS. The C terminal domain of M1 interacts with Hsc70. We found that Hsc70 does not correlate with the transport of M1 to the nucleus, however, it does inhibit the nuclear export of M1 and NP, thus resulting in the inhibition of viral production. This is the first demonstration that Hsc70 is directly associated with M1 and therefore is required for viral production.  相似文献   

14.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

15.
Induction of heat shock proteins (Hsps), especially the 70-kDa family, is well observed in nervous tissues in response to various stressful conditions. By using rat astrocytes in primary culture, the expression of the inducible (Hsp70) and the constitutive (Hsc70) 70-kDa Hsps immunoreactivity of cells exposed to hypoxic conditions has been investigated. We observed that exposure of astroglial cells to an hypoxic-normoxic sequence induces a significant decrease of Hsc70 immunoreactivity. The presence of the heat inducible stress protein Hsp70 is never observed in hypoxic cells not in control. Hsc 70 lowering is associated with ultrastructural alterations characterized by mitochondria swelling, formation of vacuoles and accumulation of dense material in the cell cytoplasm. The effects of addition of almitrine to the culture medium before and during hypoxia on Hsps immunoreactivity have been examined. The presence of the drug prevents the decrease of Hsc 70 immunoreactivity induced by hypoxia. Furthermore, some ultrastructural improvement is observed in astroglial cells treated with almitrine suggesting some protecting role of Hsc70 on cell damage induced by hypoxia.  相似文献   

16.
The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.  相似文献   

17.
18.
19.
20.
Amplification and overexpression of murine double minute (MDM2) has been observed in several human cancers. Some chemotherapeutic agents cause MDM2 ubiquitination and degradation in a proteasome-dependent system. In addition to the proteasome system, chaperone-mediated autophagy (CMA) is a lysosomal pathway for selective misfolded protein degradation. Molecular chaperone heat shock cognate 70 protein (Hsc70) recognizes the misfolded proteins, which are then delivered to lysosome-associated membrane protein type 2A (LAMP2A) for lysosomal degradation. Our previous study reported that hispolon was able to induce cell apoptosis and downregulate MDM2 expression. In this study, our results showed that the proteasome inhibitor, MG132, could not inhibit hispolon-induced MDM2 downregulation. In contrast, both inhibition of lysosomes with NH4Cl and inhibition of LAMP2A using siRNA partially attenuated hispolon-induced MDM2 downregulation. To determine whether Hsc70 recognizes MDM2 on amino acids 135-141, SMP14 antibody was used to compete with Hsc70 for interaction with MDM2. After Hsc70 knockdown, SMP14 antibody immunoprecipitated increased MDM2. We also found that hispolon induced increased association of Hsp70, Hsc70, Hsp90 and LAMP2A with MDM2. This association was inhibited in cells pretreated with geldanamycin (GA), an Hsp90 inhibitor. GA also attenuated hispolon-induced MDM2 downregulation. Meanwhile, inhibition of Hsc70 using siRNA attenuated hispolon-induced MDM2 downregulation. Our study provides the first example of the ability of hispolon to mediate MDM2 downregulation in lysosomes through the CMA pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号