首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Waterbury JA  Horabin JI  Bopp D  Schedl P 《Genetics》2000,155(4):1741-1756
It has been suggested that sexual identity in the germline depends upon the combination of a nonautonomous somatic signaling pathway and an autonomous X chromosome counting system. In the studies reported here, we have examined the role of the sexual differentiation genes transformer (tra) and doublesex (dsx) in regulating the activity of the somatic signaling pathway. We asked whether ectopic somatic expression of the female products of the tra and dsx genes could feminize the germline of XY animals. We find that Tra(F) is sufficient to feminize XY germ cells, shutting off the expression of male-specific markers and activating the expression of female-specific markers. Feminization of the germline depends upon the constitutively expressed transformer-2 (tra-2) gene, but does not seem to require a functional dsx gene. However, feminization of XY germ cells by Tra(F) can be blocked by the male form of the Dsx protein (Dsx(M)). Expression of the female form of dsx, Dsx(F), in XY animals also induced germline expression of female markers. Taken together with a previous analysis of the effects of mutations in tra, tra-2, and dsx on the feminization of XX germ cells in XX animals, our findings indicate that the somatic signaling pathway is redundant at the level tra and dsx. Finally, our studies call into question the idea that a cell-autonomous X chromosome counting system plays a central role in germline sex determination.  相似文献   

2.
To investigate the mechanism of sex determination in the germ line, we analyzed the fate of XY germ cells in ovaries, and the fate of XX germ cells in testes. In ovaries, germ cells developed according to their X:A ratio, i.e., XX cells underwent oogenesis, XY cells formed spermatocytes. In testes, however, XY and XX germ cells entered the spermatogenic pathway. Thus, to determine their sex, the germ cells of Drosophila have cell-autonomous genetic information, and XX cells respond to inductive signals of the soma. Results obtained with amorphic and constitutive mutations of Sxl show that both the genetic and the somatic signals act through Sxl to achieve sex determination in germ cells.  相似文献   

3.
J. I. Horabin  D. Bopp  J. Waterbury    P. Schedl 《Genetics》1995,141(4):1521-1535
Unlike sex determination in the soma, which is an autonomous process, sex determination in the germline of Drosophila has both inductive and autonomous components. In this paper, we examined how sexual identity is selected and maintained in the Drosophila germline. We show that female-specific expression of genes in the germline is dependent on a somatic signaling pathway. This signaling pathway requires the sex-non-specific transformer 2 gene but, surprisingly, does not appear to require the sex-specific genes, transformer and doublesex. Moreover, in contrast to the soma where pathway initiation and maintenance are independent processes, the somatic signaling pathway appears to function continuously from embryogenesis to the larval stages to select and sustain female germline identity. We also show that the primary target for the somatic signaling pathway in germ cells can not be the Sex-lethal gene.  相似文献   

4.
5.
In Drosophila, the sex of germ cells is determined by autonomous and inductive signals. Somatic inductive signals can drive XX germ cells into oogenesis or into spermatogenesis. An autonomous signal makes XY germ cells male and unresponsive to sex determination by induction. The elements forming the X:A ratio in the soma and the genes tra, tra2, dsx, and ix that determine the sex of somatic cells have no similar role in the germline. The gene Sxl, however, is required for female differentiation of somatic and germ cells. Inductive signals that are dependent on somatic tra and dsx expression already affect the sex-specific development of germ cells of first instar larvae. At this early stage, however, germline expression of Sxl does not appear to affect the sexual characteristics of germ cells. Since inductive signals dependent on tra and dsx nevertheless influence the choice of sex-specific splicing of Sxl, it can be concluded that Sxl is a target of the inductive signal, but that its product is required late for oogenesis. Other genes must therefore control the early sexual dimorphism of larval germ cells. © 1994 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
9.
C Cronmiller  T W Cline 《Cell》1987,48(3):479-487
As a regulator of the female-specific gene Sxl, da+ provides an essential maternal component in the control of sex determination and dosage compensation; nevertheless, neither the maternal nor zygotic phenotypes of the original mutant da allele is sex-specific. Here we clarify the role of da+ in Drosophila development, finding: this sex determination gene is indeed pleiotropic; zygotic functioning of da+ is essential in both sexes for somatic cell development, but not for germ cell development; da female sterility results from a somatic, rather than germ-line, defect; and expression of da+ in the maternal germ line is required only for daughters in the subsequent generation, as expected for a specific regulator of Sxl+. These conclusions follow from the characterization of new da null alleles isolated by a selection for defects in maternally acting positive regulators of Sxl.  相似文献   

10.
11.
Siera SG  Cline TW 《Genetics》2008,180(4):1963-1981
We describe a surprising new regulatory relationship between two key genes of the Drosophila sex-determination gene hierarchy, Sex-lethal (Sxl) and transformer (tra). A positive autoregulatory feedback loop for Sxl was known to maintain somatic cell female identity by producing SXL-F protein to continually instruct the target gene transformer (tra) to make its feminizing product, TRA-F. We discovered the reciprocal regulatory effect by studying genetically sensitized females: TRA-F from either maternal or zygotic tra expression stimulates Sxl-positive autoregulation. We found female-specific tra mRNA in eggs as predicted by this tra maternal effect, but not predicted by the prevailing view that tra has no germline function. TRA-F stimulation of Sxl seems to be direct at some point, since Sxl harbors highly conserved predicted TRA-F binding sites. Nevertheless, TRA-F stimulation of Sxl autoregulation in the gonadal soma also appears to have a cell-nonautonomous aspect, unprecedented for somatic Sxl regulation. This tra-Sxl retrograde regulatory circuit has evolutionary implications. In some Diptera, tra occupies Sxl's position as the gene that epigenetically maintains female identity through direct positive feedback on pre-mRNA splicing. The tra-mediated Sxl feedback in Drosophila may be a vestige of regulatory redundancy that facilitated the evolutionary transition from tra to Sxl as the master sex switch.  相似文献   

12.
We have analyzed the mechanism of sex determination in the germ line of Drosophila by manipulating three parameters: (1) the ratio of X-chromosomes to sets of autosomes (X:A); (2) the state of activity of the gene Sex-lethal (Sxl), and (3) the sex of the gonadal soma. To this end, animals with a ratio of 2X:2A and 2X:3A were sexually transformed into pseudomales by mutations at the sex-determining genes Sxl (Sex-lethal), tra (transformer), tra-2 (transformer-2), or dsx (double-sex). Animals with the karyotype 2X;3A were also transformed into pseudofemales by the constitutive mutation SxlM1. The sexual phenotype of the gonads and of the germ cells was assessed by phase-contrast microscopy. Confirming the conclusions of Steinmann-Zwicky et al. (Cell 57, 157, 1989), we found that all three parameters affect sex determination in germ cells. In contrast to the soma in which sex determination is completely cell-autonomous, sex determination in the germ line has a non-autonomous component inasmuch as the sex of the soma can influence the sexual pathway of the germ cells. Somatic induction has a clear effect on 2X;2A germ cells that carry a Sxl+ allele. These cells, which form eggs in an ovary, can enter spermatogenesis in testes. Mutations that cause partial loss of function or gain of function of Sxl thwart somatic induction and, independently of the sex of the soma, dictate spermatogenesis or oogenesis, respectively. Somatic induction has a much weaker effect on 2X;3A germ cells. This ratio is essentially a male signal for germ cells which consistently enter spermatogenesis in testes, even when they carry SxlM1. In a female soma, however, SxlM1 enables the 2X;3A germ cells to form almost normal eggs. Our results show that sex determination in the germ line is more complex than in the soma. They provide further evidence that the state of Sxl, the key gene for sex determination and dosage compensation in the soma, also determines the sex of the germ cells, and that, in the germ line, the state of activity of Sxl is regulated not only by the X:A ratio, but also by somatic inductive stimuli.  相似文献   

13.
14.
Gametogenesis in males and females differs in many ways. An important difference in Drosophila is that recombination between homologous chromosomes occurs only in female meiosis. Here, we report that this process relies on the correct functioning of Sex-lethal (Sxl) which is primarily known as the master gene in somatic sex determination. Certain alleles of this gene (Sxl(fs)) disrupt the germline, but not the somatic function of Sxl and cause an arrest of germ cell development during cystocyte proliferation. Using dominant suppressor mutations that relieve this early block in Sxl(fs) mutant females, we discovered additional requirements of Sxl for normal meiotic differentiation of the oocyte. Females mutant for Sxl(fs) and carrying a suppressor become fertile, but pairing of homologous chromosomes and formation of chiasmata is severely perturbed, resulting in an almost complete lack of recombinants and a high incidence of non-disjunction events. Similar results were obtained when germline expression of wild-type Sxl was compromised by mutations in virilizer (vir), a positive regulator of Sxl. Ectopic expression of a Sxl transgene in premeiotic stages of male germline development, on the other hand, is not sufficient to allow recombination to take place, which suggests that Sxl does not have a discriminatory role in this female-specific process. We propose that Sxl performs at least two tasks in oogenesis: an 'early' function in formation of the egg chamber, and a 'late' function in progression of the meiotic cell cycle, suggesting that both events are coordinated by a common mechanism.  相似文献   

15.
X inactivation has evolved in the soma of mammalian females so that both sexes have the same ratio of X:autosomal gene expression. The X chromosome in the germ cells of XY males is also precociously inactivated for reasons that remain unclear. Unlike X inactivation in the soma, this germline X inactivation is not restricted to mammals but has evolved independently in several animal phyla. Thus, germline X inactivation might have been the precursor of somatic X inactivation in mammals. We now propose a hypothesis for the evolution of germline X inactivation. The hypothesis predicts a redistribution of late spermatogenic genes from the X chromosome to the autosomes, leading eventually to germline X inactivation as the X chromosome becomes 'demasculinized'. Sexual antagonism could be the mechanism driving this redistribution. Recent expression and genetic studies in mammals, nematodes and Drosophila support this hypothesis, and expression data on taxa that have not evolved germline X inactivation, such as birds and butterflies, should shed further light on it.  相似文献   

16.
In Drosophila, females require products of the gene Sxl for sex determination, dosage compensation and fertility. I show here that the X-chromosomal gene liz, located in 4F1 to 4F11 and previously called fs(1)1621, provides maternal and zygotic functions necessary for Sxl activity in germ line and soma. In XX animals, the mutation SxlM1 which was reported to express the female-specific functions of Sxl constitutively can rescue all phenotypes resulting from lack of liz product. XY animals carrying SxlM1 and lacking maternal or zygotic liz activity survive as males with some female traits. A stock was constructed in which the females are liz SxlM1/liz SxlM1 and males liz SxlM1/Y. This shows that SxlM1 is not truly expressed constitutively in animals with an X:A ratio of 0.5, but requires activity of liz for initiation or maintenance.  相似文献   

17.
Evans DS  Cline TW 《Genetics》2007,175(2):631-642
Female differentiation of Drosophila germ cells is induced by cell-nonautonomous signals generated in the gonadal soma that work with germ-cell-autonomous signals determined by germ-cell X chromosome dose. Generation of the nonautonomous feminizing signals was known to involve female-specific protein encoded by the master sex-determination gene Sex-lethal (Sxl) acting on its switch-gene target transformer (tra) to produce Tra(F) protein. However, it was not known whether Sxl's action on tra alone would suffice to trigger a fully feminizing nonautonomous signal. We developed a constitutively feminizing tra transgene that allowed us to answer this question. In gynanders (XX//XO mosaics) feminized by this Tra(F) transgene, functionally Sxl- haplo-X (chromosomally male) somatic cells collaborated successfully with diplo-X (chromosomally female) germ cells to make functional eggs. The fertility of such gynanders shows not only that Tra(F) is sufficient to elicit a fully feminizing nonautonomous signal, but also that haplo-X somatic cells can execute all other somatic functions required for oogenesis, despite the fact that their genome is not expected to be dosage compensated for such diplo-X-specific functions. The unexpected observation that some Tra(F)-feminized gynanders failed to lay their eggs showed there to be diplo-X cells outside the gonad for which Tra(F)-feminized haplo-X cells cannot substitute.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号