首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we examined the effects of transforming growth factor beta (TGF beta) on the proliferation and differentiation of rabbit tracheal epithelial cells in primary culture. Treatment of these cells with TGF beta inhibits cell proliferation in a time- and dose-dependent manner; concentrations as low as 1 pM are able to inhibit cell growth. Concomitantly, TGF beta causes cells to accumulate in the G0/G1 phase of the cell cycle and a sharp reduction in the ability of the cells to form colonies after subculture at clonal density. These results indicate that TGF beta induces terminal cell division in these cells. The inhibition of cell growth is accompanied by changes in cell morphology and a stimulation of the formation of cross-linked envelopes. TGF beta enhances the levels of transglutaminase activity and cholesterol sulfate, two markers of squamous differentiation. Our results indicate that TGF beta induces terminal squamous cell differentiation in rabbit tracheal epithelial cells. Retinoic acid (RA) does not affect the commitment to terminal cell division induced by TGF beta, but inhibits the expression of the squamous phenotype. Growth of normal human bronchial epithelial cells was affected by TGF beta in a way similar to that of rabbit tracheal epithelial cells. Several carcinoma cell lines tested were quite resistant to TGF beta, whereas growth of one carcinoma cell line was stimulated by TGF beta. These results indicate that a modified response to TGF beta could be one mechanism involved in the aberrant growth control of malignant cells.  相似文献   

2.
3.
Transforming growth factor beta (TGF beta) inhibits cell proliferation by inducing a G1 cell-cycle arrest. Cyclin/CDK complexes have been implicated in this arrest, because TGF beta treatment leads to inhibition of cyclin/CDK activity. We have investigated the role of the retinoblastoma protein (pRb) in TGF beta-induced growth arrest by using RB+/+ and RB-/- primary mouse embryo fibroblasts. In both of these cell types, TGF beta inhibits CDK4-associated kinase activity. However, whereas CDK2-associated kinase activity was completely inhibited by TGF beta in the wild-type cells, it was reduced only slightly in the RB mutant cells. In addition, at high-cell density the growth-inhibitory effects of TGF beta are no longer observed in the RB-/- cells; on the contrary, TGF beta treatment promotes the growth of these mutant fibroblasts. Thus, under certain cellular growth conditions, elimination of pRb transforms the growth-inhibitory effects of TGF beta into growth-stimulatory effects. These observations could help to explain why TGF beta is often found to enhance tumorigenicity in vivo and why inactivation of the RB gene leads to tumorigenesis.  相似文献   

4.
The effect of TGF-beta 1 treatment on the level of protein disulfide isomerase (PDI) mRNA in normal and chemically or spontaneously transformed rat liver epithelial cell lines was investigated. TGF-beta 1 at 1 or 10 ng/ml concentrations did not significantly decrease the mRNA level of PDI at 4 or 24 hours after exposure to TGF-beta 1, irrespective whether the cell line was sensitive or resistant to the growth-inhibitory effect of TGF-beta 1 at these concentrations. The results indicate that in normal or neoplastic rat liver epithelial cells, the expression of PDI is unrelated to the growth inhibitory effect of TGF-beta 1.  相似文献   

5.
An endothelial cell line (M40) resistant to growth inhibition by transforming growth factor-beta type 1 (TGF beta 1) was isolated by chemical mutagenesis and growth in the presence of TGF beta 1. Like normal endothelial cells, this mutant is characterized by high expression of type II TGF beta receptor and low expression of type I TGF beta receptor. However, the mutant cells display a type II TGF beta receptor of reduced molecular weight as a result of a general defect in N-glycosylation of proteins. The alteration does not impair TGF beta 1 binding to cell surface receptors or the ability of TGF beta 1 to induce fibronectin or plasminogen activator inhibitor-type I production. M40 cells were also resistant to growth inhibition by tumor necrosis factor alpha (TNF alpha) and interleukin-1 alpha (IL-1 alpha) but were inhibited by interferon-gamma (IFN gamma) and heparin. These results imply that TGF beta 1, TNF alpha, and IL-1 alpha act through signal transducing pathways that are separate from pathways for IFN gamma and heparin. Basic fibroblast growth factor was still mitogenic for M40, further suggesting that TGF beta 1, TNF alpha, and IL-1 alpha act by direct inhibition of cell growth rather than by interfering with growth stimulatory pathways.  相似文献   

6.
Acquired drug resistance of tumor cells is frequently observed in cancer patients undergoing chemotherapy. We studied murine leukemia L1210 cells sensitive and resistant to the cytotoxic action of cisplatin and showed that cisplatin-resistant leukemia cells were also refractory to TGF beta1-dependent growth inhibition and apoptosis. Addressing the question about the mechanisms responsible for the cross-resistance to cisplatin and TGF beta1, we found that cisplatin- and TGF beta1-resistant L1210 cells possessed a decreased expression of type I TGF beta1 receptor, while the expression of type II TGF beta1 receptor was not affected. Western blot analysis of Smad proteins 2, 3, 4, 6, and 7, which participate in signal transduction pathway down-stream of the TGF beta1 receptors, revealed an increased expression of Smad 6, inhibiting TGF beta1 action, only in cisplatin- and TGF beta1-resistant L1210 cells. TGF beta1 and especially the cytotoxic mistletoe agglutinin increased Smad 6 expression in TGF beta1-sensitive but not in TGF beta1-resistant L1210 cells. TGF beta1-resistant L1210 cells also differed from TGF beta1-sensitive cells by the lack of expression of the pro-apoptotic p53 protein and higher level of expression of the anti-apoptotic Bcl-2 protein. Thus, the described co-expression of tumor cell refractoriness to an anti-cancer drug and to the inhibitory cytokine TGF beta1 is accompanied by multiple changes in the TGF beta1 signal transduction pathway and in other regulatory systems of the target cells. Besides, we found that various anti-tumor drugs and cytotoxic plant lectins increased the level of TGF beta1 expression in both TGFbeta1-sensitive and -resistant L1210 cells. A hypothesis is proposed that TGFbeta1 can at least partly mediate the effect of cell-stressing agents and, thus, the development of TGF beta1 resistance may be responsible for the appearance of tumor cell refractoriness to the action of some anti-cancer drugs.  相似文献   

7.
8.
Chemokine amplification in mesangial cells.   总被引:5,自引:0,他引:5  
Mesangial cells are specialized cells of the renal glomerulus that share some properties of vascular smooth muscle cells and macrophages. They are implicated in the pathogenesis of many forms of nephritis. The murine CXC-chemokines macrophage inflammatory protein-2 (MIP-2) and KC induce migration of mouse mesangial cells. Mesangial cells also exhibit a unique chemokine feedback mechanism. Treatment with nanomolar concentrations of MIP-2 or KC markedly up-regulates monocyte chemoattractant protein-1 and RANTES expression in mesangial cells. Autoinduction of MIP-2 and KC mRNA was also noted. Low levels of MIP-1alpha, MIP-1beta, and IFN-gamma-inducible protein-10 were induced following treatment with higher doses of MIP-2 or KC. These effects are specific to mesangial cells, as MIP-2 or KC treatment of renal cortical epithelial cells or peritoneal macrophages failed to induce chemokine production. This cascade of chemokine interactions may contribute to renal infiltration and leukocyte activation. The abilities of MIP-2 or KC to stimulate their own synthesis may also contribute to the maintenance and chronic course of glomerular inflammation. The mesangial cell receptor for MIP-2 and/or KC is unknown but is not CXC-chemokine receptor-2.  相似文献   

9.
Previous studies from this laboratory (Schroy, P., Rifkin, J., Coffey, R.J., Winawer, S., and Friedman, E. (Cancer Res., 50: 261-265, 1990; Schroy, P.C., Winawer, S., and Friedman, E. Cancer Lett., 48: 53-58, 1989) found that a 7-day treatment of the human colon carcinoma cell line HT29 with the differentiation agent hexamethylene bisacetamide (HMBA) induces both a 4-5-fold increase in transforming growth factor beta 1 (TGF beta 1) mRNA levels and reduced tumorigenicity in vivo. A series of 15 cloned lines with different commitments to differentiation has been isolated from 20-day HMBA-treated HT29 cells, maintained without HMBA, and utilized to study the role of TGF beta 1 in colon carcinoma differentiation. Two such lines, HD6 and HD8, differentiate to 97 and 76% mucus-secreting goblet cells, respectively, in columnar monolayers in postconfluent culture. Both HD6 and HD8 cells exhibit low TGF beta 1 mRNA levels, little different from the undifferentiated HT29 parental line, and exhibit no growth modulation in response to exogenous TGF beta 1. In contrast, two other lines, HD3 and HD4, differentiate to fluid-transporting enterocytic cells with functional brush borders and exhibit autocrine-negative growth response to TGF beta 1. Both lines express TGF beta 1 mRNA at levels 11-12-fold higher than the parental line and respond to exogenous TGF beta 1 by growth inhibition. HD3 cells secrete biologically active TGF beta 1 into conditioned media, which inhibited growth of a TGF beta 1-sensitive mink cell line. This inhibition was blocked by antisera to TGF beta 1, proving the specificity of the inhibition. A range of concentrations of this TGF beta 1 antiserum stimulated HD3 cell growth in a dose-dependent manner, further documenting the autocrine-negative response of the cells to TGF beta 1. Another cell line, HI1, was blocked in enterocytic differentiation. HI1 cells synthesized as much TGF beta 1 mRNA as HD3 and HD4 cells, yet they responded to exogenous TGF beta 1 with less growth inhibition, suggesting some impairment in their response to TGF beta 1. A third class of response to TGF beta 1 was exhibited by the HP1 cell line, which was resistant to HMBA-induced differentiation, remaining undifferentiated with a multilayered growth pattern. HP1 cells synthesized TGF beta 1 mRNA at levels over 20 times the parental level but were stimulated to divide by TGF beta 1, exhibiting autocrine-positive response to this growth factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Development of the mammalian secondary palate requires proper production of the extracellular matrix, particularly glycosaminoglycans (GAGs) and collagen. Endogenous factors that regulate the metabolism of these molecules are largely undefined. A candidate for a locally derived molecule would be transforming growth factor beta 1 (TGF beta 1) by virtue of its potency as a modulator of extracellular matrix metabolism by several cell lines. We have thus attempted to assign a regulatory role for TGF beta 1 in modulation of GAG production and degradation by mesenchymal cells of the murine embryonic palate (MEPM). Treatment with TGF beta 1 or TGF beta 2, but not IGF-II, resulted in a stimulation of total GAG synthesis. Furthermore, cells treated with both TGF beta 1 and TGF alpha showed a synergistic increase in GAG synthesis if pretreated with TGF beta 1 but not TGF alpha. Simultaneous stimulation with TGF beta 1 and TGF beta 2 did not elicit a synergistic response. These studies demonstrate the ability of TGF beta, synthesized by embryonic palatal cells, to specifically stimulate GAG synthesis by MEPM cells. Other growth factors present in the developing craniofacial region may also modulate TGF beta-induced GAG synthesis, a biosynthetic process critical to normal development of the embryonic palate.  相似文献   

11.
TGF beta 1 from porcine platelets increased alkaline phosphatase (AP) activity in the rat osteoblastic cell line ROS 17/2.8 about three-fold. This effect was dose-dependent with an ED50 of about approximately 0.2 ng/ml and was larger during logarithmic growth than at confluence. TGF beta 1 inhibited cell growth by about 30% with similar dose dependence. Thirty min exposure to TGF beta 1 was sufficient to increase AP activity 3 days later by about two-fold but did not affect cell growth, suggesting dissociation between effects on proliferation and differentiation. The rise in AP activity started 6 h after TGF beta 1 addition and was blocked by cycloheximide and actinomycin D. TGF beta 1 also increased AP mRNA by two- to three-fold and this effect was not blocked by cycloheximide. The half-life of AP mRNA, estimated following the addition of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole was about ten h in both control and TGF beta 1-treated cells. The mRNAs for type I procollagen and osteonectin were also increased by TGF beta 1 but fibronectin mRNA was decreased. TGF beta 2 effects on AP and cell growth were similar to those of TGF beta 1, except for lack of activity following transient exposure. At saturating concentrations, TGF beta 2 (2 ng/ml) or dexamethasone (10(-7) M), which has similar effects on these cells, did not further augment the effects of TGF beta 1 (at 2 ng/ml). Above findings suggest that TGF beta promotes osteoblastic differentiation in rat osteosarcoma cells at least in part by acting at the pretranslational level.  相似文献   

12.
The transforming growth factor beta (TGF beta) family members are ubiquitously expressed and control a variety of cellular processes by interacting with at least two types of high affinity cell surface receptors. However, the primary signal transduction mechanism of the receptors is unknown. The ras-encoded 21-kDa GTP binding proteins have recently been shown to mediate the effects of other polypeptide growth factors. Here we show that both TGF beta 1 and TGF beta 2 (5 ng/ml) result in a rapid (within 6 or 12 min, respectively) stimulation of GTP bound to p21ras in TGF beta-sensitive intestinal epithelial cells. Further, the CCL64 epithelial cell line, extremely sensitive to growth inhibition by TGF beta, displayed a concentration-dependent increase in GTP bound to p21ras by TGF beta 1 and a rapid activation of p21ras by TGF beta 2. The results provide the first direct evidence for rapid activation of a receptor coupling component for TGF beta in epithelial cells.  相似文献   

13.
The potential role of transforming growth factor beta (TGF beta) as a mediator of cell-cell interactions within the seminiferous tubule was investigated through an examination of the local production and action of TGF beta. Sertoli cells and peritubular (myoid) cells were isolated and cultured under serum-free conditions. Secreted proteins from Sertoli cells and peritubular cells were found to contain a component that bound to TGF beta receptors in RRA. Reverse-phase chromatography of Sertoli cell and peritubular cell secreted proteins fractionated a protein with similar biochemical properties as TGF beta 1. This fractionated protein also contained TGF beta bioactivity in its ability to inhibit growth of an epidermal growth factor-dependent cell line. Both peritubular cells and Sertoli cells contained a 2.4 kilobase mRNA species that hybridized in a Northern blot analysis with a TGF beta 1 cDNA probe. TGF beta 1 gene expression was not detected in freshly isolated germ cells. TGF beta 1 alone was not found to influence Sertoli cell nor peritubular cell proliferation with cells isolated from a midpubertal stage of development. The effects of hormones and TGF beta on Sertoli cell differentiation and function were assessed through an examination of transferrin production by Sertoli cells. TGF beta 1 had no effect on transferrin production nor the ability of hormones to influence transferrin production. The presence of peritubular cells in a coculture with Sertoli cells also did not affect the inability of TGF beta 1 to act on Sertoli cells. Although Sertoli cell function did not appear to be influenced by TGF beta 1, peritubular cells responded to TGF beta 1 through an increase in the production of a number of radiolabeled secreted proteins. TGF beta 1 also had relatively rapid effects on peritubular cell migration and the promotion of colony formation in culture. Cocultures of Sertoli cells and peritubular cells responded to TGF beta 1 by the formation of large cell clusters with ball-like structures. Data indicate that TGF beta may have an important role in influencing the differentiation and migration of peritubular cells. Observations demonstrate the local production of TGF beta within the seminiferous tubule by Sertoli cells and peritubular cells and suggest that TGF beta may have a role as a paracrine-autocrine factor involved in the maintenance of testicular function.  相似文献   

14.
Transforming growth factors and control of neoplastic cell growth   总被引:18,自引:0,他引:18  
Transforming growth factors (TGFs) are peptides that affect the growth and phenotype of cultured cells and bring about in nonmalignant fibroblastic cells phenotypic properties that resemble those of malignant cells. Two types of TGFs have been well characterized. One of these, TGF alpha, is related to epidermal growth factor (EGF) and binds to the EGF receptor, whereas the other, TGF beta, is not structurally or functionally related to TGF alpha or EGF and mediates its effects via distinct receptors. TGF beta is produced by a variety of normal and malignant cells. Depending upon the assay system employed, TGF beta has both growth-inhibitory and growth-stimulating properties. Many of the mitogenic effects of TGF beta are probably an indirect result of the activation of certain growth factor genes in the target cell. The ubiquitous nature of the TGF beta receptor and the production of TGF beta in a latent form by most cultured cells suggests that the differing cellular responses to TGF beta are regulated either by events involved in the activation of the factor or by postreceptor mechanisms. The combined effects of TGF beta with other growth factors or inhibitors evidently play a central role in the control of normal and malignant cellular growth as well as in cell differentiation and morphogenesis. Since transforming growth factor as a concept has partially proven misleading and insufficient, there is a need to find a new nomenclature for these regulators of cellular growth and differentiation.  相似文献   

15.
Regulation of ovarian cancer growth is poorly understood. In this study, the effects of EGF, TGF alpha and TGF beta 1 on two ovarian cancer cell lines (OVCAR-3 and CAOV-3) were investigated. The results showed that EGF/TGF alpha stimulated cell growth and DNA synthesis in OVCAR-3 cells, but inhibited cell proliferation and DNA synthesis in CAOV-3 cells. TGF beta 1 invariably inhibited cell proliferation and DNA synthesis in both cell lines. These effects on growth factors are dose dependent. The interaction of TGF beta 1 and EGF/TGF alpha was antagonistic in OVCAR-3 cells. In contrast, EGF/TGF alpha and TGF beta 1 had an additive inhibitory effect on CAOV-3 cells. Our results demonstrated that mature and functional EGF receptors are present in both cell lines and that they are capable of ligand binding, internalization, processing and ligand-enhanced autophosphorylation. Both high- and low-affinity binding are present in these cell lines, with CAOV-3 cells having about 2-3-fold higher total receptors than OVCAR-3 cells. These results together with those from our previous studies show that these cells express TGF alpha, TGF beta 1 and EGF receptors and that cell growth may be modulated by these growth factors in an autocrine and paracrine manner. This report presents evidence supporting the important roles of growth factors in ovarian cancer growth and provides a foundation for further study into the mechanism of growth regulation by growth factors in these cell lines.  相似文献   

16.
We have examined the effects of TGF beta 1 and TGF beta 2 on the HEL human erythroleukemia cell line. It was observed that TGF beta 1 and 2 induced hemoglobin synthesis in these cells without causing a significant negative effect on cell proliferation. The cell surface markers glycophorin A and transferrin receptor that are associated with erythroid differentiation were also increased. This cell line may provide a model system in which to study the regulation of globin gene expression by a physiological growth factor known to act on hemopoietic cells.  相似文献   

17.
18.
Transforming growth factor beta 1 (TGF beta 1) has been shown to have multiple effects on primary cultures of palate-derived cell types. We report the analysis, by in situ hybridization, of RNA expression for three different TGF beta isoforms (TGF beta 1, beta 2, and beta 3) during murine embryonic palate development. Differential expression of the three TGF beta genes is seen in the palatal shelves in mesenchymal and epithelial cells known to be involved in the morphogenesis of this organ. Taken together, these results suggest that the TGF beta s act as endogenous factors involved in the formation of the mammalian palate.  相似文献   

19.
We describe studies on human breast cancer in which it is shown that specific growth factors (IGF-I, TGF alpha, PDGF) are secreted by human breast cancer cells and likely to be involved in tumor growth and progression. These activities are regulated by estradiol in hormone-dependent breast cancer and secreted constitutively by hormone-independent cells. These growth factor activities can induce the growth of hormone-dependent cells in vivo in athymic nude mice. Hormone-dependent breast cancer cells also secrete TGF beta, a growth-inhibitory substance, when treated with antiestrogens. TGF beta functions as a negative autocrine growth regulator and is responsible for some of the growth-inhibitory effects of antiestrogens.  相似文献   

20.
Transforming growth factor beta1 (TGF beta 1) plays important roles in the regulation of cell growth and differentiation in both normal and malignant prostate epithelial cells. Although certain pathways have been suggested, the mechanisms responsible for the action of TGF beta 1 are not well understood. In the present study, using a human papilloma virus 16 E6/E7 immortalized prostate epithelial cell line, HPr-1, we report that TGF beta 1 was able to suppress the expression of Id-1, a helix-loop-helix (HLH) protein, which plays important roles in the inhibition of cell differentiation and growth arrest. In addition, a decrease at both Id-1 mRNA and protein expression levels was associated with TGF beta 1-induced growth arrest and differentiation, indicating that Id-1 may be involved in TGF beta 1 signaling pathway. The fact that up-regulation of p21(WAF1), one of the downstream effectors of Id-1, was observed after exposure to TGF beta 1 further indicates the involvement of Id-1 in the TGF beta 1-induced growth arrest in HPr-1 cells. However, increased expression of p27(KIP1) was also observed in the TGF beta 1-treated cells, suggesting that in addition to down-regulation of Id-1, other factors may be involved in the TGF beta 1-induced cell growth arrest and differentiation in prostate epithelial cells. Our results provide evidence for the first time that TGF beta 1 may be one of the upstream regulators of Id-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号