首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Semiconductor quantum dots (QDs) are proved to be unique fluorescent labels providing excellent possibilities for high-throughput detection and diagnostics. To explore in full QDs’ advantages in brightness, photostability, large Stokes shift, and tunability by size fluorescence emission, they should be rendered stable in biological fluids and tagged with the target-specific capture molecules. Ideal QD-based nanoprobes should not exceed 15 nm in diameter and should contain on their surface multiple copies of homogeneously oriented highly active affinity molecules, for example, antibodies (Abs). Direct conjugation of QDs with the Abs through cross-linking of QDs’ amines with the sulfhydryl groups issued from the reduced Abs’ disulfide bonds is the common technique. However, this procedure often generates conjugates in which the number of functionally active Abs on the surface of QDs does not always conform to expectations and is often low. Here we have developed an advanced procedure with the optimized critical steps of Ab reduction, affinity purification, and QD–Ab conjugation. We succeeded in reducing the Abs in such a way that the reduction reaction yields highly functional, partially cleaved, 75-kDa heavy–light Ab fragments. Affinity purification of these Ab fragments followed by their tagging with the QDs generates QD–Ab conjugates with largely improved functionality compared with those produced according to the standard procedures. The developed approach can be extended to conjugation of any type of Ab with different semiconductor, noble metal, or magnetic nanocrystals.  相似文献   

2.
We present a robust scheme for preparation of semiconductor quantum dots (QDs) and cognate partners in a conjugation ready format. Our approach is based on bis-aryl hydrazone bond formation mediated by aromatic aldehyde and hydrazinonicotinate acetone hydrazone (HyNic) activated peptide coated quantum dots. We demonstrate controlled preparation of antibody--QD bioconjugates for specific targeting of endogenous epidermal growth factor receptors in breast cancer cells and for single QD tracking of transmembrane proteins via an extracellular epitope. The same approach was also used for optical mapping of RNA polymerases bound to combed genomic DNA in vitro.  相似文献   

3.
The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work, we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot 1005-0045, and QD585, lot 0905-0031, from Invitrogen). This is the first step in the development of calibration beads to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited state lifetime measurements, to characterize their spectroscopic behavior, concentrating on the 400- to 500-nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480 nm excitation up to 0.4 at 450 nm and down again to 0.15 at 350 nm. For QD585, QY values were constant at 0.2 between 500 and 400 nm, but they dropped to 0.1 at 350 nm. We attribute the wavelength dependencies to heterogeneity in size and surface defects in the QD525, consistent with characteristics described previously in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots and the quantitative needs of assay development in biological applications.  相似文献   

4.
Conventional quantum dots have great potential in cancer-related imaging and diagnostic applications; however, these applications are limited by concerns about the inherent toxicity of their core materials (e.g., cadmium, lead). Virtually all imaging applications require conjugation of the imaging agent to a biologically active molecule to achieve selective uptake or binding. Here, we report a study of biocompatible silicon quantum dots covalently attached to biomolecules including lysine, folate, antimesothelin, and transferrin. The particles possess desirable physical properties, surface chemistry, and optical properties. Folate- and antimesothelin-conjugated silicon quantum dots show selective uptake into Panc-1 cells. This study contributes to the preclinical evaluation of silicon quantum dots and further demonstrates their potential as an imaging agent for cancer applications.  相似文献   

5.
A capillary electrophoretic immunoassay with chemiluminescence detection (CEIA-CL) using a non-competitive format for analyzing tumor marker alpha-fetoprotein (AFP) has been developed. In this method, antigen (Ag) AFP reacts with an excess amount of horseradish peroxidase (HRP)-labeled antibody (Ab*). The free Ab* and the bound Ab*-Ag complex produced in the solution are separated by CE in a separation capillary. Then they catalyze the reaction of enzyme substrate luminol and H(2)O(2) in a reaction capillary following the separation capillary. Parameters affecting the CE separation and CL detection were investigated. Under the optimal conditions, the free Ab* and the Ab*-Ag complex were well separated within 4 min, the linear range and the detection limit (S/N=3) for AFP were 5-500 ng/ml and 0.85 ng/ml (1.2 x 10(-11)M), respectively. The proposed method has been applied satisfactorily in the analysis of human sera samples.  相似文献   

6.
A rapid and sensitive immunoassays of mercury (Hg) in biological samples was developed using quantum dots (QDs) and magnetic beads (MBs) as fluorescent and separated probes, respectively. A monoclonal antibody (mAb) that recognizes an Hg detection antigen (BSA-DTPA-Hg) complex was produced by the injection of BALB/c mice with an Hg immunizing antigen (KLH-DTPA-Hg). Then the ascites monoclonal antibodies were purified. The Hg monoclonal antibody (Hg-mAb) is conjugated with MBs to separate Hg from biological samples, and the other antibody, which is associated with QDs, is used to detect the fluorescence. The Hg in biological samples can be quantified using the relationship between the QDs fluorescence intensity and the concentration of Hg in biological samples following magnetic separation. In this method, the detection linear range is 1–1000 ng/mL, and the minimum detection limit is 1 ng/mL. The standard addition recovery rate was 94.70–101.18%. The relative standard deviation values were 2.76–7.56%. Furthermore, the Hg concentration can be detected in less than 30 min, the significant interference of other heavy metals can be avoided, and the simultaneous testing of 96 samples can be performed. These results indicate that the method could be used for rapid monitoring Hg in the body.  相似文献   

7.
A capillary electrophoretic enzyme immunoassay with electrochemical detection (CE-EIA-ED) has been developed. In this method, antigen (Ag) competes with horseradish peroxidase (HRP)-labeled antigen (HRP-Ag) for a limited number of antibody (Ab) binding sites. The free HRP-Ag and the bound HRP-Ag-Ab complex are separated by capillary electrophoresis in a separation capillary. Then they catalyze the oxidation of their enzyme substrate 3,3',5,5'-tetramethylbenzide (TMB (reduced form)) with H(2)O(2) in a reaction capillary, which follows the separation capillary. The reaction product (TMB (oxidized form)) is amperometrically determined using a carbon fiber microdisk bundle electrode at the outlet of the reaction capillary. Due to the amplification of the enzyme, the concentration of TMB(Ox) is much higher than those of free HRP-Ag and the bound HRP-Ag-Ab complex. Therefore, the limit of detection (LOD) of CE-EIA-ED is very low. The method has been used to determine thyroxine in human serum. A concentration of LOD of 3.8 x 10(-9)mol/L, which corresponds to a mass LOD of 23.2 amol, was achieved.  相似文献   

8.
Double detection of microsphere light scattering and quantum dot emission was demonstrated for lab-on-a-chip immunoassay without using stationary support. We conjugated quantum dots (QDs) onto microspheres to enable multiplex assays as well as to enhance the limit of detection (LOD). We named this configuration "nano-on-micro" or "NOM". Upon radiation with UV light (380nm), a stronger light scattering signal is observed with NOMs than QDs or microspheres alone. Additionally, NOMs are easier to handle than QDs. Since QDs also provide fluorescent emission, we are able to utilize an increase in light scattering for detecting antigen-antibody reaction and a decrease in QD emission to identify which antibody (or antigen) is present. Two types of NOM combinations were used. One batch of microspheres was coated with QDs emitting at 655 nm and mouse IgG (mIgG); the other with QDs emitting at 605 nm and bovine serum albumin (BSA). A mixture of these two NOMs was used to identify either anti-mIgG or anti-BSA. NOM particles and target solutions were mixed in a microfluidic device (using highly carboxylated microspheres as previously demonstrated by our group) and on-chip detection was performed using proximity optical fibers. Forward light scattering at 380 nm was collected. With the positive target, the scattering signal was increased. The LOD was as low as 50 ng ml(-1) (330 pM) with p<0.05. Fluorescent emission (655 or 605 nm) was simultaneously collected. With the positive target, the emission signal was attenuated. Therefore, we were able to detect two different antibodies simultaneously with two different detection protocols. We believe this NOM bioassay has the ability to screen for and detect multiple antibodies with minimal sample processing and handling (one-step lab-on-a-chip immunoassay).  相似文献   

9.
GSK-3beta is a regulatory serine/threonine kinase with a plethora of cellular targets. Consequently, selective small molecule inhibitors of GSK-3beta may have a variety of therapeutic uses including the treatment of neurodegenerative diseases, type II diabetes and cancer. In order to characterize the active site of GSK-3beta, we determined crystal structures of unphosphorylated GSK-3beta in complex with selective and non-selective ATP-mimetic inhibitors. Analysis of the inhibitors' interactions with GSK-3beta in the structures reveals how the enzyme can accommodate a number of diverse molecular scaffolds. In addition, a conserved water molecule near Thr138 is identified that can serve a functional role in inhibitor binding. Finally, a comparison of the interactions made by selective and non-selective inhibitors highlights residues on the edge of the ATP binding-site that can be used to obtain inhibitor selectivity. Information gained from these structures provides a promising route for the design of second-generation GSK-3beta inhibitors.  相似文献   

10.
A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.  相似文献   

11.
Molecular recognition may be characterized both qualitatively and quantitatively by electrophoretic methods if complexed molecules differ in electrophoretic mobility from unbound ones. The use of capillary zone electrophoresis (CE) for the characterization of affinity interactions is advantageous because of the high resolution, reproducibility and wide applicability of the technique and because of the mild conditions, i.e., physiological buffers without additions of organics or detergents, that are often sufficient for highly efficient separations. CE gives the ability to characterize binding between small amounts of unlabelled reactants in solution, has few requirements for special characteristics of the interacting molecules and is also applicable to the study of interactions of individual components in mixtures, as detection of binding and analytical separation are achieved in one step. This is unique compared with other techniques for the study of non-covalent interactions. The advantages and disadvantages of using CE to demonstrate molecular interactions, to screen for specific ligand binding in complex mixtures and to calculate binding constants will be discussed.  相似文献   

12.
This paper describes a simple and rapid analytical method for the structural identification of abnormal human hemoglobins. Globin chains obtained by precipitation of erythrocyte hemolysate in cold acetone are directly analyzed by capillary zone electrophoresis in coated capillaries without any prior treatment. The speed and the high resolving power of capillary zone electrophoresis allow fast differentiation of hemoglobins with similar charges. Capillary zone electrophoretic tryptic mapping has also been performed for each globin, so that complete variant characterization can be achieved by direct comparison of the variant tryptic map with the corresponding normal one. Coupling electrophoretic data with analysis of enzymatic digests by mass spectrometry according to the "fast atom bombardment mapping" procedure makes it possible to quickly identify amino acid variations. This paper describes how the method can be applied to the characterization of common and uncommon variants and underlines the advantages and limitations of the procedure along with its potential uses in structural analysis of proteins.  相似文献   

13.
We have quantitatively analyzed the confocal spectra of colloidal quantum dots (QDs) in rat endothelial progenitor cells (EPCs) by using Leica TCS SP5 Confocal Microscopy System. Comparison of the confocal spectra of QDs located inside and outside EPCs revealed that the interaction between the QDs and EPCs effectively reduces the radius of the exciton confinement inside the QDs so that the excitonic energy increases and the QD fluorescence peak blueshifts. Furthermore, the EPC environment surrounding the QDs shields the QDs so that the excitation of the QDs inside the cells is relatively weak, whereas the QDs outside the cells can be highly excited. At high excitations, the occupation of the ground excitonic state in the QD outside the cells becomes saturated and high-energy states excited, resulting in a large relaxation energy and a broad fluorescence peak. This permits, in concept, to use QD biomarkers to monitor EPCs by characterizing QD fluorescence spectra.  相似文献   

14.
Facile labeling of lipoglycans with quantum dots   总被引:1,自引:0,他引:1  
Bacterial endotoxins or lipopolysaccharides (LPS) are among the most potent activators of the innate immune system, yet mechanisms of their action and in particular the role of glycans remain elusive. Efficient non-invasive labeling strategies are necessary for studying interactions of LPS glycans with biological systems. Here we report a new method for labeling LPS and other lipoglycans with luminescent quantum dots. The labeling is achieved by partitioning of hydrophobic quantum dots into the core of various LPS aggregates without disturbing the native LPS structure. The biofunctionality of the LPS-Qdot conjugates is demonstrated by the labeling of mouse monocytes. This simple method should find broad applicability in studies concerned with visualization of LPS biodistribution and identification of LPS binding agents.  相似文献   

15.
Glycosyltransferases are key enzymes in glycoconjugate biosynthesis, which make them important targets for biomedical research. Among the different methodologies developed to analyze glycosyltransferase activities, fluorophore-assisted capillary electrophoresis (FACE) emerges as a powerful technique in carbohydrate analysis. Its application to monitor glycosyltransferase activity has been limited to reactions with derivatized sugars as acceptor substrates in which a charged fluorophore/chromophore must be introduced, thus requiring tedious preparative synthesis and purification for each single acceptor substrate. Here we describe a novel and general glycosyltransferase assay based on FACE using underivatized acceptor substrates. Enzyme activity is monitored by a discontinuous assay with postreaction derivatization by reductive amination with 8-aminonaphthalene-1,3,6-trisulfonic acid. The reaction mixture is directly analyzed by HPCE (high-performance capillary electrophoresis) under inverted electroosmotic conditions at pH 2.5 and 30 degrees C. After method validation, it was applied to the kinetic characterization of an alpha-1,3-galactosyltransferase, the enzyme responsible for the biosynthesis of alphaGal epitope involved in the hyperacute rejection in xenotransplantation. The absence of a label on the acceptor during the GT reaction avoids any interference of the label with the enzyme, and the postreaction derivatization does not require any purification step.  相似文献   

16.
作为镰刀属真菌的次级代谢产物,玉米赤霉烯酮(zearalenone,ZEN)具有强烈的生殖毒性和免疫毒性,严重威胁动物和人类健康。本研究通过采用羧基修饰的CdSe水溶性量子点(quantum dots,QDs)标记ZEN单克隆抗体,并基于CdSe阳离子交换信号增强原理,建立了ZEN新型荧光免疫检测方法(CdSe QDs-FLISA),检测下限(IC10)和半数抑制率(IC50)分别为0.006 ng/mL和0.17 ng/mL,检测区间(IC20–IC80)为0.01–0.45 ng/mL。与ZEN的结构类似物(α-zearalanol、zearalanone、α-zearalenol、β-zearalenol and β-zearalanol)交叉反应性依次为22.3%、13.1%、6.2%、1.6%和3.9%,与农产品中其他真菌毒素如黄曲霉毒素B1(AFB1)、赭曲霉毒素A(OTA)、呕吐毒素(DON)和伏马毒素B1(FB1)几乎不存在交叉反应。该方法...  相似文献   

17.

Background  

Quantum dots (QDs) have been considered as a new and efficient probe for labeling cells non-invasively in vitro and in vivo, but fairly little is known about how QDs are eliminated from cells after labeling. The purpose of this study is to investigate the metabolism of QDs in different type of cells.  相似文献   

18.
Prostate-specific antigen (PSA) is a single-chain glycoprotein that is used as a biomarker for prostate-related diseases. PSA has one known posttranslational modification, a sialylated diantennary N-linked oligosaccharide attached to the asparagine residue N45. In this study capillary electrophoresis (CE) was employed to separate the isoforms of seven commercially available free PSA samples, two of which were specialized: enzymatically active PSA and noncomplexing PSA. The free PSA samples examined migrated as four to nine distinct, highly resolved peaks, indicating the presence of several isoforms differing in their oligosaccharide compositions. Overall, the use of CE provides a rapid, reproducible method for separation of PSA into its individual isoforms.  相似文献   

19.
Surfaces featuring nano-structures and biochemical patterns are increasingly developed as novel and superior substrates for biosensors and assays. Metallic periodic nano-structures have been studied for their unique optical properties and in particular their ability to support surface plasmon waves. Here we present a new nano-structuring approach based on gentle metal lift-off process coupled with self-assembled surface chemistry for the fabrication of a zeroth-order 400nm period metallic grating with differentiated surface chemistries on the mesas and troughs. The approach, using terminated self-assembled monolayers, creates versatile functionalized substrates allowing the precise deposition of complex biomolecular structures. We use this technique to perform the guided deposition of a three-dimensional polyelectrolyte multilayer structure and the patterned adsorption of quantum dots. Finally, we demonstrate that scanning near-field optical microscopy, used in conjuncture with atomic force microscopy and scanning electron microscopy, is an ideal tool for the characterization of this nano-structured surface as it provides a complete chemical, topographical and optical image of the surface. This ability to pattern and locally measure the surface properties is likely to have an important impact on the design of novel and optimized biointerfaces and transducers for biosensors.  相似文献   

20.
Mi C  Wang Y  Zhang J  Huang H  Xu L  Wang S  Fang X  Fang J  Mao C  Xu S 《Journal of biotechnology》2011,153(3-4):125-132
Quantum dots (QDs) were prepared in genetically engineered Escherichia coli (E. coli) through the introduction of foreign genes encoding a CdS binding peptide. The CdS QDs were successfully separated from the bacteria through two methods, lysis and freezing-thawing of cells, and purified with an anion-exchange resin. High-resolution transmission electron microscopy, X-ray diffraction, luminescence spectroscopy, and energy dispersive X-ray spectroscopy were applied to characterize the as-prepared CdS QDs. The effects of reactant concentrations, bacteria incubation times, and reaction times on QD growth were systematically investigated. Our work demonstrates that genetically engineered bacteria can be used to synthesize QDs. The biologically synthesized QDs are expected to be more biocompatible probes in bio-labeling and imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号