首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific activity (concentration) of microsomal HMG CoA reductase of intestinal crypt cells was studied in rats fed sterols and bile acids, either singly or in combination. It was found that the basal activity of the reductase was not suppressed by the administration of relatively large amounts of bile acid (taurocholate or taurochenodeoxycholate). Bile acids reduced the specific activity of the reductase only in rats in which the activity of the enzyme had first been enhanced by biliary diversion or by sitosterol feeding. In addition, bile acid feeding abolished the diurnal elevation of reductase activity that normally occurs between midnight and 2 a.m. In no case did bile acids reduce enzyme activity below basal levels. A pronounced (60%) reduction of intestinal HMG CoA reductase activity was observed in rats fed cholesterol and bile acid in combination. This reduction in activity could not be ascribed to an increase in intestinal bile acid flux but was associated with an increase in sterol concentration within the intestinal crypt cells. These results indicate that dietary sterols and bile acids both play a role in the regulation of intestinal HMG CoA reductase.  相似文献   

2.
HMG CoA reductase of intestinal mucosa and liver of the rat   总被引:1,自引:0,他引:1  
Methods were developed for the determination of HMG CoA (3-hydroxy-3-methylglutaryl CoA) reductase activity in subcellular fractions of intestinal mucosa and liver of Wistar strain rats. In the liver, reductase activity was located exclusively in the microsomal fraction. In the intestinal mucosa, activity was found in both mitochondrial and microsomal fractions of crypt cells but not of villi. The microsomal HMG CoA reductases of liver and intestinal mucosa had similar kinetic characteristics and pH optima. However, the activity of the hepatic enzyme differed with age and sex of the experimental animals while that of the intestinal crypt cells did not. Cholestyramine treatment enhanced the activity of the microsomal HMG CoA reductase in both liver and intestinal mucosa. Reductase activity of the intestinal crypt cells was elevated in both jejunum and ileum. The greatest stimulation, both relatively and absolutely, was observed in the distal half of the jejunum.  相似文献   

3.
Previous studies have demonstrated that the in vitro activation of microsomal hepatic hydroxymethylglutaryl (HMG) CoA reductase by dephosphorylation is inhibited by HMG CoA or NADPH, the substrates of HMG CoA reductase (13). In the present study the effect of three competitive inhibitors of HMG CoA reductase on the activation of HMG CoA reductase was investigated. Adenosine-2'-monophospho-5'-diphosphoribose, a competitive inhibitor for the NADPH binding site, blocked the phosphatase-mediated activation of HMG CoA reductase. By contrast, neither compactin nor mevinolin, competitive inhibitors for the HMG CoA binding site, altered the activation of HMG CoA reductase. Moreover, the HMG CoA-mediated inhibition of the activation of HMG CoA reductase was not blocked even by very high concentrations of either compactin or mevinolin. These observations suggest that HMG CoA can bind to two sites on HMG CoA reductase. One site of HMG CoA binding serves as a catalytic site and is competitively blocked by compactin or mevinolin, and the second binding site is an allosteric site to which only HMG CoA is capable of binding. The binding of HMG CoA to this second site inhibits the activation of HMG CoA reductase by phosphatases.  相似文献   

4.
The diurnal cycle of hepatic HMG CoA reductase activity was studied under conditions of controlled feeding where the percentage of dietary lipid, alone or in combination with 2% cholestyramine, was varied. Cholestyramine caused an increase in HMG CoA reductase activity that began soon after feeding started and peaked 6 hr later. In contrast, a diet containing 20% corn oil was a much weaker inducer of the enzyme but caused a prolonged elevation that began late in the fasting part of the cycle. These patterns suggest two different mechanisms of action.  相似文献   

5.
Decreased activities of both 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase are observed in the presence of sterol in the Chinese hamster ovary (CHO) fibroblast. In three different genotypes of CHO cell mutants resistant to 25-hydroxycholesterol both enzyme activities exhibit a decreased response to 25-hydroxycholesterol compared to wild-type cells. Permanently repressed levels of both HMG CoA synthase and HMG CoA reductase activities are observed in another CHO mutant, phenotypically a mevalonate auxotroph. Mevinolin, a competitive inhibitor of HMG CoA reductase, has no effect on HMG CoA synthase activity measured in vitro. Incubation of CHO cells with sublethal concentrations of mevinolin produces an inhibition of the conversion of [14C]acetate to cholesterol and results in elevated levels of both HMG CoA synthase and HMG CoA reductase activities. Studies of CHO cells in sterol-free medium supplemented with cycloheximide indicate that continuous protein synthesis is not required for the maximal expression of HMG CoA synthase activity and provide an explanation for the lack of temporal similarity between HMG CoA synthase and reductase activities after derepression. These results support the hypothesis of a common mode of regulation for HMG CoA synthase and HMG CoA reductase activities in CHO fibroblasts.  相似文献   

6.
7.
8.
S Azhar  Y D Chen  G M Reaven 《Biochemistry》1984,23(20):4533-4538
These studies were done to examine the effect of gonadotropin on rat luteal 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity (the rate-limiting step in cholesterol biosynthesis) in ovaries of pregnant mare's serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG) primed rats. Administration of hCG stimulated HMG CoA reductase activity in a time- and dose-dependent manner: significant increases were noted within 4 h, with maximum effects (30-40-fold increases) seen 24 h after hCG (25 IU) administration. This effect was specific in that only LH, of several hormones tested, was as effective as hCG in stimulating HMG CoA reductase activity, and no change in the activity of either liver microsomal HMG CoA reductase or luteal microsomal NADPH-cytochrome c reductase was seen after hCG. The gonadotropin-induced increase in HMG CoA reductase activity seemed to be due to a net increase in enzyme activity, not to a change in the phosphorylated/dephosphorylated state of the enzyme. Pretreatment of animals with aminoglutethimide, an inhibitor of the conversion of cholesterol to steroid (pregnenolone), prevented the hCG-induced rise in HMG CoA reductase activity, whereas treatment with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), which depletes cellular cholesterol content, led to striking increases in enzyme activity. However, the combined effects of 4-APP and hCG were additive, suggesting that the stimulating effect of hCG on HMG CoA reductase activity is not entirely due to a depletion of cellular sterol content of luteinized ovaries. Similarly, cholesteryl ester and cholesterol syntheses as measured by [14C]acetate conversion were also increased by hCG and 4-APP treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Two new methods are described for the study of hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase. (1) Endoplasmic reticulum was rapidly prepared by diluting a 10,000 g supernatant with buffer containing 8 mM calcium chloride. The yield of protein and the specific activity of HMG CoA reductase in the pellet subsequently obtained by low speed centrifugation were nearly identical to those in the microsomal pellet prepared by ultracentrifugation. This technique may be particularly useful in studies of the rapid, in vitro modulation of the enzyme. (2) Mevalonolactone was extracted into benzene from the HMG CoA reductase assay mixture with an efficiency of 58%. There was less than 1% extraction of HMG CoA, acetoacetate, or beta-hydroxybutyrate. The extracted mevalonolactone was at least 98% pure as judged by thin-layer chromatography with four different solvent systems. These improved methods should significantly aid studies of the physiological importance of HMG CoA reductase.  相似文献   

11.
We previously showed that preincubation of a 10,000 g supernatant (S(10)) from rat liver for 20 min at 37 degrees C dramatically increased the subsequent incorporation of [(14)C]acetate into sterols. No activation was seen with [(14)C]mevalonate as substrate. In the present studies we have examined the effect of preincubation on HMG CoA reductase. When microsomes were isolated from S(10) by calcium precipitation, preincubation of S(10) increased the specific activity of HMG CoA reductase threefold. No activation of HMG CoA reductase was observed in microsomes isolated by ultracentrifugation. Activation was cyclic AMP-sensitive. When cyclic AMP (0.001-1.0 mM) and MgATP (1 mM) were present during the preincubation period, there was little or no activation of HMG CoA reductase activity or of sterol synthesis from acetate. MgATP alone did not prevent activation. Neither cyclic AMP nor MgATP was inhibitory when present only during the assay of sterol synthesis. We propose that the in vitro activation represents the reversal of a physiologic cyclic AMP-mediated mechanism for the control of hepatic HMG CoA reductase. That a phosphoprotein phosphatase may catalyze the activation was supported by the observation that sodium fluoride, an inhibitor of phosphoprotein phosphatases, inhibited the activation. These results suggest that hormone-induced changes in the cellular level of cyclic AMP may regulate the activity of HMG CoA reductase and the rate of hepatic cholesterol synthesis.  相似文献   

12.
Acetoacetyl CoA thiolase and 3-hydroxy-3-methylglutaryl (HMG) CoA synthase were found almost entirely in the cytosol of Saccharomyces cerevisiae, whereas HMG CoA reductase was found almost entirely in mitochondria and further located in the matrix. Formation of all three enzymes was inhibited by cycloheximide, but not by chloramphenicol, indicating that they were synthesized in the cytosol. In anaerobically growing cells the levels of acetoacetyl CoA thiolase and HMG CoA synthase were decreased by ergosterol, whereas HMG CoA reductase levels were affected only slightly, suggesting that in yeast the enzymes responsible for synthesis of HMG CoA were regulated by ergosterol. Aerobically growing cells were essentially impermeable to ergosterol and cholesterol, whereas those growing anaerobically and requiring sterols were readily permeable. Mutants blocked in ergosterol formation were also permeable to sterols under aerobic conditions.  相似文献   

13.
Sterols accelerate degradation of the ER enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), which catalyzes a rate-controlling step in cholesterol biosynthesis. This degradation contributes to feedback inhibition of synthesis of cholesterol and nonsterol isoprenoids. Here, we show that degradation of HMG CoA reductase is accelerated by the sterol-induced binding of its sterol-sensing domain to the ER protein insig-1. Accelerated degradation is inhibited by overexpression of the sterol-sensing domain of SREBP cleavage-activating protein (SCAP), suggesting that both proteins bind to the same site on insig-1. Whereas insig-1 binding to SCAP leads to ER retention, insig-1 binding to HMG CoA reductase leads to accelerated degradation that is blocked by proteasome inhibitors. Insig-1 appears to play an essential role in the sterol-mediated trafficking of two proteins with sterol-sensing domains, HMG CoA reductase and SCAP.  相似文献   

14.
In skin fibroblasts grown from four children with a homozygous form of type II hyperlipoproteinemia, the feedback control of sterol synthesis and the inhibitory effect on hydroxymethylglutaryl (HMG) CoA reductase activity by serum or low density lipoprotein were present, though diminished compared with the effects in normal fibroblasts. Stimulation of HMG CoA reductase by insulin and inhibition of acetyl CoA carboxylase by serum lipids were not impaired in these type II cells, indicating a degree of specificity in the abnormal response of the reductase. A rapid and convenient method for isolation of mevalonolactone in the course of the assay of HMG CoA reductase is described.  相似文献   

15.
Specific activities of the hepatic microsomal enzymes 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase and cholesterol 7alpha-hydroxylase were studied in rats fed sterols and bile acids. The administration of bile acids (taurocholate, taurodeoxycholate, taurochenodeoxycholate) at a level of 1% of the diet for 1 wk reduced the activity of HMG CoA reductase. Taurocholate and taurodeoxycholate, but not taurochenodeoxycholate, inhibited cholesterol 7alpha-hydroxylase. Dietary sitosterol produced increases in the specific activity of HMG CoA reductase (3.6-fold) and cholesterol 7alpha-hydroxylase (1.4-fold), and biliary cholesterol concentrations in this group more than doubled. Compared with controls fed the stock diet, the simultaneous administration of sitosterol and taurochenodeoxycholate resulted in a 60% decrease of HMG CoA reductase activity and no change in cholesterol 7alpha-hydroxylase activity or biliary cholesterol concentration. Rats fed sitosterol plus taurocholate had nearly normal HMG CoA reductase activity, but cholesterol 7alpha-hydroxylase was inhibited and biliary cholesterol remained high. Bile acid secretion rates and biliary bile acid composition were similar in controls and sterol-fed animals. In all groups receiving bile acids, biliary secretion of bile acids was nearly doubled and bile acid composition was shifted in the direction of the administered bile acid. It is concluded that the composition of the bile acid pool influences the hepatic concentrations of the rate-controlling enzymes of bile acid synthesis.  相似文献   

16.
A rapid, easy, and sensitive method is described in this paper for the assay of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase, a key enzyme in cholesterol biosynthesis. [14C]HMG CoA was used as the substrate and the product formed, i.e., [14C]mevalonate, was allowed to be converted to its lactone form (mevalonolactone) in the presence of HCl. The reaction mixture was applied to a column containing an anionic exchanger. The column was made up of QAE-Sephadex (A25, formate form) packed to a height of 4 cm in Pasteur pipets. Under these conditions, mevalonolactone was not retained by the column and was eluted with ammonium formate solution while HMG CoA, being negatively charged, was retained by the gel and eluted by HCl above 0.05 M. Determination of the amount of radioactivity in mevalonolactone was then used to quantitate the activity of HMG CoA reductase. This assay has been successfully used for determining the activity of this enzyme in a microsomal fraction prepared from the liver of the rat.  相似文献   

17.
The effect of inhibition of 3-Hydroxy-3-methylglutaryl Coenzyme A reductase (HMG CoA reductase) on cell cycle progression in proliferating 3T3 cells was studied. It was found that short transient exposures to the HMG CoA reductase inhibitor 25-hydroxycholesterol temporarily blocked the cell cycle traverse in the postmitotic half of G1 (G1pm), whereas cells in the subsequent cell cycle phases were unaffected. The kinetics of the cell cycle delay, induced by 25-hydroxycholesterol, resembled the kinetics of the delay induced by serum depletion, which also inhibited the activity of HMG CoA reductase. In contrast to the case of serum depletion, platelet derived growth factor (PDGF), which efficiently prevented the decrease of HMG CoA reductase in serum-free medium, was not capable of preventing the growth inhibitory effect following treatment by 25-hydroxycholesterol. However, cholesterol and two isoprenoids, dolichol and coenzyme Q, were effective in this respect. In addition, dolichol counteracted the cell cycle delay following short periods of serum starvation.  相似文献   

18.
The isoprenoid metabolic pathway is mainly regulated at the level of conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) to mevalonate, catalyzed by HMG CoA reductase. As estrogens are known to influence cholesterol metabolism, we have explored the potential regulation of the HMG CoA reductase gene promoter by estrogens. The promoter contains an estrogen-responsive element-like sequence at position -93 (termed Red-ERE), which differs from the ERE consensus by one mismatch in each half of the palindrome. A Red-ERE oligonucleotide specifically bound estrogen receptor in vitro and conferred receptor-dependent estrogen responsiveness to a heterologous promoter in all cell lines tested. However, expression of a reporter driven by the rat HMG CoA reductase promoter was induced by estrogen treatment after transient transfection into the breast cancer cell line MCF-7 cells but not in hepatic cell lines expressing estrogen receptor. Estrogen induction in MCF-7 cells was dependent on the Red-ERE and was strongly inhibited by the antiestrogen ICI 164,384. A functional cAMP-responsive element is located immediately upstream of the Red-ERE, but cAMP and estrogens inhibit each other in terms of transactivation of the promoter. Similarly, induction by estrogens was inhibited by micromolar concentrations of cholesterol, likely acting via changes in occupancy of the sterol-responsive element located 70 bp upstream of the Red-ERE. Thus, within its natural context, Red-ERE is able to mediate hormonal regulation of the HMG CoA reductase gene in tissues that respond to estrogens with enhanced cell proliferation, while it is not operative in liver cells. We postulate that this tissue-specific regulation of HMG CoA reductase by estrogens could partially explain the protective effect of estrogens against heart disease.  相似文献   

19.
A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.  相似文献   

20.
Larsson  Olle 《Glycobiology》1993,3(5):475-479
Proliferation of exponentially growing breast cancer cells (lineHs578T) was blocked specifically in G1 by 3-hydroxy-3-methylglutarylCoenzyme A (HMG CoA) reductase inhibition, as well as by inhibitionof N-linked glycosylation. As a consequence of these inhibitoryconditions, the cells were synchronized in the G1 stage of thecell cycle. The similarities in the kinetic responses pointto the possibility that the two different types of metabolicinhibitions block cell cycle progression by common mechanisms.One possibility is that the inhibition of HMG CoA reductaseactivity also leads to a depressed rate of N-linked glycosylation,which in turn may constitute the critical event for cell cycleprogression and cell growth. In order to investigate whetherthis relationship exists in breast cancer cells, cells synchronizedin G1 by mevinolin (an inhibitor of HMG CoA reductase) wereused. Upon addition of mevalonate, whose endogenous synthesisis catalysed by HMG CoA reductase, the cells entered S phaseafter a 4 h pre-replicative period. Mevalonate stimulation alsoled to a rapid and substantial increase in N-linked glycosylation,measured by determining the uptake of radioactive glucosamine.This metabolic event was found to be of critical importancefor the initiation of DNA synthesis. However, as soon as thecells had entered S phase, they were independent of the levelof N-linked glycosylation. breast cancer cells glycosylation HMG CoA reductase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号