首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skolnick J  Kihara D 《Proteins》2001,42(3):319-331
PROSPECTOR (PROtein Structure Predictor Employing Combined Threading to Optimize Results) is a new threading approach that uses sequence profiles to generate an initial probe-template alignment and then uses this "partly thawed" alignment in the evaluation of pair interactions. Two types of sequence profiles are used: the close set, composed of sequences in which sequence identity lies between 35% and 90%; and the distant set, composed of sequences with a FASTA E-score less than 10. Thus, a total of four scoring functions are used in a hierarchical method: the close (distant) sequence profiles screen a structural database to provide an initial alignment of the probe sequence in each of the templates. The same database is then screened with a scoring function composed of sequence plus secondary structure plus pair interaction profiles. This combined hierarchical threading method is called PROSPECTOR1. For the original Fischer database, 59 of 68 pairs are correctly identified in the top position. Next, the set of the top 20 scoring sequences (four scoring functions times the top five structures) is used to construct a protein-specific pair potential based on consensus side-chain contacts occurring in 25% of the structures. In subsequent threading iterations, this protein-specific pair potential, when combined in a composite manner, is found to be more sensitive in identifying the correct pairs than when the original statistical potential is used, and it increases the number of recognized structures for the combined scoring functions, termed PROSPECTOR2, to a total of 61 Fischer pairs identified in the top position. Application to a second, smaller Fischer database of 27 probe-template pairs places 18 (17) structures in the top position for PROSPECTOR1 (PROSPECTOR2). Overall, these studies show that the use of pair interactions as assessed by the improved Z-score enhances the specificity of probe-template matches. Thus, when the hierarchy of scoring functions is combined, the ability to identify correct probe-template pairs is significantly enhanced. Finally, a web server has been established for use by the academic community (http://bioinformatics.danforthcenter.org/services/threading.html).  相似文献   

2.
Lu L  Lu H  Skolnick J 《Proteins》2002,49(3):350-364
In this postgenomic era, the ability to identify protein-protein interactions on a genomic scale is very important to assist in the assignment of physiological function. Because of the increasing number of solved structures involving protein complexes, the time is ripe to extend threading to the prediction of quaternary structure. In this spirit, a multimeric threading approach has been developed. The approach is comprised of two phases. In the first phase, traditional threading on a single chain is applied to generate a set of potential structures for the query sequences. In particular, we use our recently developed threading algorithm, PROSPECTOR. Then, for those proteins whose template structures are part of a known complex, we rethread on both partners in the complex and now include a protein-protein interfacial energy. To perform this analysis, a database of multimeric protein structures has been constructed, the necessary interfacial pairwise potentials have been derived, and a set of empirical indicators to identify true multimers based on the threading Z-score and the magnitude of the interfacial energy have been established. The algorithm has been tested on a benchmark set comprised of 40 homodimers, 15 heterodimers, and 69 monomers that were scanned against a protein library of 2478 structures that comprise a representative set of structures in the Protein Data Bank. Of these, the method correctly recognized and assigned 36 homodimers, 15 heterodimers, and 65 monomers. This protocol was applied to identify partners and assign quaternary structures of proteins found in the yeast database of interacting proteins. Our multimeric threading algorithm correctly predicts 144 interacting proteins, compared to the 56 (26) cases assigned by PSI-BLAST using a (less) permissive E-value of 1 (0.01). Next, all possible pairs of yeast proteins have been examined. Predictions (n = 2865) of protein-protein interactions are made; 1138 of these 2865 interactions have counterparts in the Database of Interacting Proteins. In contrast, PSI-BLAST made 1781 predictions, and 1215 have counterparts in DIP. An estimation of the false-negative rate for yeast-predicted interactions has also been provided. Thus, a promising approach to help assist in the assignment of protein-protein interactions on a genomic scale has been developed.  相似文献   

3.
Betancourt MR 《Proteins》2003,53(4):889-907
A protein model that is simple enough to be used in protein-folding simulations but accurate enough to identify a protein native fold is described. Its geometry consists of describing the residues by one, two, or three pseudoatoms, depending on the residue size. Its energy is given by a pairwise, knowledge-based potential obtained for all the pseudoatoms as a function of their relative distance. The pseudoatomic potential is also a function of the primary chain separation and residue order. The model is tested by gapless threading on a large, representative set of known protein and decoy structures obtained from the "Decoys 'R' Us" database. It is also tested by threading on gapped decoys generated for proteins with many homologs. The gapless threading tests show near 98% native-structure recognition as the lowest energy structure and almost 100% as one of the three lowest energy structures for over 2200 test proteins. In decoy threading tests, the model recognized the majority of the native structures. It is also able to recognize native structures among gapped decoys, in spite of close structural similarities. The results indicate that the pseudoatomic model has native recognition ability similar to comparable atomic-based models but much better than equivalent residue-based models.  相似文献   

4.
To facilitate investigation of the molecular and biochemical functions of the adenovirus E4 Orf6 protein, we sought to derive three-dimensional structural information using computational methods, particularly threading and comparative protein modeling. The amino acid sequence of the protein was used for secondary structure and hidden Markov model (HMM) analyses, and for fold recognition by the ProCeryon program. Six alternative models were generated from the top-scoring folds identified by threading. These models were examined by 3D-1D analysis and evaluated in the light of available experimental evidence. The final model of the E4 protein derived from these and additional threading calculations was a chimera, with the tertiary structure of its C-terminal 226 residues derived from a TIM barrel template and a mainly alpha-nonbundle topology for its poorly conserved N-terminal 68 residues. To assess the accuracy of this model, additional threading calculations were performed with E4 Orf6 sequences altered as in previous experimental studies. The proposed structural model is consistent with the reported secondary structure of a functionally important C-terminal sequence and can account for the properties of proteins carrying alterations in functionally important sequences or of those that disrupt an unusual zinc-coordination motif.  相似文献   

5.
We present an analysis of 10 blind predictions prepared for a recent conference, “Critical Assessment of Techniques for Protein Structure Prediction.”1 The sequences of these proteins are not detectably similar to those of any protein in the structure database then available, but we attempted, by a threading method, to recognize similarity to known domain folds. Four of the 10 proteins, as we subsequently learned, do indeed show significant similarity to then-known structures. For 2 of these proteins the predictions were accurate, in the sense that a similar structure was at or near the top of the list of threading scores, and the threading alignment agreed well with the corresponding structural alignment. For the best predicted model mean alignment error relative to the optimal structural alignment was 2.7 residues, arising entirely from small “register shifts” of strands or helices. In the analysis we attempt to identify factors responsible for these successes and failures. Since our threading method does not use gap penalties, we may readily distinguish between errors arising from our prior definition of the “cores” of known structures and errors arising from inherent limitations in the threading potential. It would appear from the results that successful substructure recognition depends most critically on accurate definition of the “fold” of a database protein. This definition must correctly delineate substructures that are, and are not, likely to be conserved during protein evolution. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Zhou H  Zhou Y 《Proteins》2005,58(2):321-328
Recognizing structural similarity without significant sequence identity has proved to be a challenging task. Sequence-based and structure-based methods as well as their combinations have been developed. Here, we propose a fold-recognition method that incorporates structural information without the need of sequence-to-structure threading. This is accomplished by generating sequence profiles from protein structural fragments. The structure-derived sequence profiles allow a simple integration with evolution-derived sequence profiles and secondary-structural information for an optimized alignment by efficient dynamic programming. The resulting method (called SP(3)) is found to make a statistically significant improvement in both sensitivity of fold recognition and accuracy of alignment over the method based on evolution-derived sequence profiles alone (SP) and the method based on evolution-derived sequence profile and secondary structure profile (SP(2)). SP(3) was tested in SALIGN benchmark for alignment accuracy and Lindahl, PROSPECTOR 3.0, and LiveBench 8.0 benchmarks for remote-homology detection and model accuracy. SP(3) is found to be the most sensitive and accurate single-method server in all benchmarks tested where other methods are available for comparison (although its results are statistically indistinguishable from the next best in some cases and the comparison is subjected to the limitation of time-dependent sequence and/or structural library used by different methods.). In LiveBench 8.0, its accuracy rivals some of the consensus methods such as ShotGun-INBGU, Pmodeller3, Pcons4, and ROBETTA. SP(3) fold-recognition server is available on http://theory.med.buffalo.edu.  相似文献   

7.
Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.  相似文献   

8.
To study local structures in proteins, we previously developed an autoassociative artificial neural network (autoANN) and clustering tool to discover intrinsic features of macromolecular structures. The hidden unit activations computed by the trained autoANN are a convenient low-dimensional encoding of the local protein backbone structure. Clustering these activation vectors results in a unique classification of protein local structural features called Structural Building Blocks (SBBs). Here we describe application of this method to a larger database of proteins, verification of the applicability of this method to structure classification, and subsequent analysis of amino acid frequencies and several commonly occurring patterns of SBBs. The SBB classification method has several interesting properties: 1) it identifies the regular secondary structures, α helix and β strand; 2) it consistently identifies other local structure features (e.g., helix caps and strand caps); 3) strong amino acid preferences are revealed at some positions in some SBBs; and 4) distinct patterns of SBBs occur in the “random coil” regions of proteins. Analysis of these patterns identifies interesting structural motifs in the protein backbone structure, indicating that SBBs can be used as “building blocks” in the analysis of protein structure. This type of pattern analysis should increase our understanding of the relationship between protein sequence and local structure, especially in the prediction of protein structures. © 1997 Wiley-Liss, Inc.  相似文献   

9.
10.
The threading approach to protein structure prediction suffers from the limited number of substantially different folds available as templates. A method is presented for the generation of artificial protein structures, amenable to threading, by modification of native ones. The artificial structures so generated are compared to the native ones and it is shown that, within the accuracy of the pseudoenergy function or force field used, these two types of structures appear equally useful for threading. Since a multitude of pseudonative artificial structures can be generated per native structure, the pool of pseudonative template structures for threading can be enormously enlarged by the inclusion of the pseudonative artificial structures. Proteins 28:522–529, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Thompson J  Baker D 《Proteins》2011,79(8):2380-2388
Prediction of protein structures from sequences is a fundamental problem in computational biology. Algorithms that attempt to predict a structure from sequence primarily use two sources of information. The first source is physical in nature: proteins fold into their lowest energy state. Given an energy function that describes the interactions governing folding, a method for constructing models of protein structures, and the amino acid sequence of a protein of interest, the structure prediction problem becomes a search for the lowest energy structure. Evolution provides an orthogonal source of information: proteins of similar sequences have similar structure, and therefore proteins of known structure can guide modeling. The relatively successful Rosetta approach takes advantage of the first, but not the second source of information during model optimization. Following the classic work by Andrej Sali and colleagues, we develop a probabilistic approach to derive spatial restraints from proteins of known structure using advances in alignment technology and the growth in the number of structures in the Protein Data Bank. These restraints define a region of conformational space that is high-probability, given the template information, and we incorporate them into Rosetta's comparative modeling protocol. The combined approach performs considerably better on a benchmark based on previous CASP experiments. Incorporating evolutionary information into Rosetta is analogous to incorporating sparse experimental data: in both cases, the additional information eliminates large regions of conformational space and increases the probability that energy-based refinement will hone in on the deep energy minimum at the native state.  相似文献   

12.
A Tramontano  A M Lesk 《Proteins》1992,13(3):231-245
Using database screening techniques we have examined the relationship between antigen-binding loops in immunoglobulins, and regions of similar conformation in other protein families. The conformations of most antigen-binding loops are not unique to immunoglobulins. But in many cases, the geometrical relationship between the loop and the peptides flanking it differs between the immunoglobulins and other structures with the same loop. We assess model building by data base screening, compared with that based on canonical structures.  相似文献   

13.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure. © 1995 Wiley-Liss, Inc.  相似文献   

14.
In this work, we develop a method called fragment comparison and the template comparison (FTCOM) for assessing the global quality of protein structural models for targets of medium and hard difficulty (remote homology) produced by structure prediction approaches such as threading or ab initio structure prediction. FTCOM requires the Cα coordinates of full length models and assesses model quality based on fragment comparison and a score derived from comparison of the model to top threading templates. On a set of 361 medium/hard targets, FTCOM was applied to and assessed for its ability to improve on the results from the SP3, SPARKS, PROSPECTOR_3, and PRO‐SP3‐TASSER threading algorithms. The average TM‐score improves by 5–10% for the first selected model by the new method over models obtained by the original selection procedure in the respective threading methods. Moreover, the number of foldable targets (TM‐score ≥ 0.4) increases from least 7.6% for SP3 to 54% for SPARKS. Thus, FTCOM is a promising approach to template selection. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Simultaneous modeling of multiple loops in proteins.   总被引:1,自引:1,他引:0       下载免费PDF全文
The most reliable methods for predicting protein structure are by way of homologous extension, using structural information from a closely related protein, or by "threading" through a set of predefined protein folds ("inverse folding"). Both sets of methods provide a model for the core of the protein--the structurally conserved secondary structures. Due to the large variability both in sequence and size of the loops that connect these secondary structures, they generally cannot be modeled using these techniques. Loop-closure algorithms are aimed at predicting loop structures, given their end-to-end distance. Various such algorithms have been described, and all have been tested by predicting the structure of a single loop in a known protein. In this paper we propose a method, which is based on the bond-scaling-relaxation loop-closure algorithm, for simultaneously predicting the structures of multiple loops, and demonstrate that, for two spatially close loops, simultaneous closure invariably leads to more accurate predictions than sequential closure. The accuracy of the predictions obtained for pairs of loops in the size range of 5-7 residues each is comparable to that obtained by other methods, when predicting the structures of single loops: the RMS deviations from the native conformations of various test cases modeled are approximately 0.6-1.7 A for backbone atoms and 1.1-3.3 A for all-atoms.  相似文献   

16.
Comparative or homology modeling of a target protein based on sequence similarity to a protein with known structure is widely used to provide structural models of proteins. Depending on the target‐template similarity these model structures may contain regions of limited structural accuracy. In principle, molecular dynamics (MD) simulations can be used to refine protein model structures and also to model loop regions that connect structurally conserved regions but it is limited by the currently accessible simulation time scales. A recently developed biasing potential replica exchange (BP‐REMD) method was used to refine loops and complete decoy protein structures at atomic resolution including explicit solvent. In standard REMD simulations several replicas of a system are run in parallel at different temperatures allowing exchanges at preset time intervals. In a BP‐REMD simulation replicas are controlled by various levels of a biasing potential to reduce the energy barriers associated with peptide backbone dihedral transitions. The method requires much fewer replicas for efficient sampling compared with T‐REMD. Application of the approach to several protein loops indicated improved conformational sampling of backbone dihedral angle of loop residues compared to conventional MD simulations. BP‐REMD refinement simulations on several test cases starting from decoy structures deviating significantly from the native structure resulted in final structures in much closer agreement with experiment compared to conventional MD simulations. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Kihara D  Skolnick J 《Proteins》2004,55(2):464-473
The genome scale threading of five complete microbial genomes is revisited using our state-of-the-art threading algorithm, PROSPECTOR_Q. Considering that structure assignment to an ORF could be useful for predicting biochemical function as well as for analyzing pathways, it is important to assess the current status of genome scale threading. The fraction of ORFs to which we could assign protein structures with a reasonably good confidence level to each genome sequences is over 72%, which is significantly higher than earlier studies. Using the assigned structures, we have predicted the function of several ORFs through "single-function" template structures, obtained from an analysis of the relationship between protein fold and function. The fold distribution of the genomes and the effect of the number of homologous sequences on structure assignment are also discussed.  相似文献   

18.
Bastolla U  Porto M  Ortíz AR 《Proteins》2008,71(1):278-299
We adopt a model of inverse folding in which folding stability results from the combination of the hydrophobic effect with local interactions responsible for secondary structure preferences. Site-specific amino acid distributions can be calculated analytically for this model. We determine optimal parameters for the local interactions by fitting the complete inverse folding model to the site-specific amino acid distributions found in the Protein Data Bank. This procedure reduces drastically the influence on the derived parameters of the preference of different secondary structures for buriedness, which affects local interaction parameters determined through the standard approach based on amino acid propensities. The quality of the fit is evaluated through the likelihood of the observed amino acid distributions given the model and the Bayesian Information Criterion, which indicate that the model with optimal local interaction parameters is strongly preferable to the model where local interaction parameters are determined through propensities. The optimal model yields a mean correlation coefficient r = 0.96 between observed and predicted amino acid distributions. The local interaction parameters are then tested in threading experiments, in combination with contact interactions, for their capacity to recognize the native structure and structures similar to the native against unrelated ones. In a challenging test, proteins structurally aligned with the Mammoth algorithm are scored with the effective free energy function. The native structure gets the highest stability score in 100% of the cases, a high recognition rate comparable to that achieved against easier decoys generated by gapless threading. We then examine proteins for which at least one highly similar template exists. In 61% of the cases, the structure with the highest stability score excluding the native belongs to the native fold, compared to 60% if we use local interaction parameters derived from the usual amino acid propensities and 52% if we use only contact interactions. A highly similar structure is present within the five best stability scores in 82%, 81%, and 76% of the cases, for local interactions determined through inverse folding, through propensity, and set to zero, respectively. These results indicate that local interactions improve substantially the performances of contact free energy functions in fold recognition, and that similar structures tend to get high stability scores, although they are often not high enough to discriminate them from unrelated structures. This work highlights the importance to apply more challenging tests, as the recognition of homologous structures, for testing stability scores for protein folding.  相似文献   

19.
Newly determined protein structures are classified to belong to a new fold, if the structures are sufficiently dissimilar from all other so far known protein structures. To analyze structural similarities of proteins, structure alignment tools are used. We demonstrate that the usage of nonsequential structure alignment tools, which neglect the polypeptide chain connectivity, can yield structure alignments with significant similarities between proteins of known three-dimensional structure and newly determined protein structures that possess a new fold. The recently introduced protein structure alignment tool, GANGSTA, is specialized to perform nonsequential alignments with proper assignment of the secondary structure types by focusing on helices and strands only. In the new version, GANGSTA+, the underlying algorithms were completely redesigned, yielding enhanced quality of structure alignments, offering alignment against a larger database of protein structures, and being more efficient. We applied DaliLite, TM-align, and GANGSTA+ on three protein crystal structures considered to be novel folds. Applying GANGSTA+ to these novel folds, we find proteins in the ASTRAL40 database, which possess significant structural similarities, albeit the alignments are nonsequential and in some cases involve secondary structure elements aligned in reverse orientation. A web server is available at http://agknapp.chemie.fu-berlin.de/gplus for pairwise alignment, visualization, and database comparison.  相似文献   

20.
Wu S  Zhang Y 《Proteins》2008,72(2):547-556
We develop a new threading algorithm MUSTER by extending the previous sequence profile-profile alignment method, PPA. It combines various sequence and structure information into single-body terms which can be conveniently used in dynamic programming search: (1) sequence profiles; (2) secondary structures; (3) structure fragment profiles; (4) solvent accessibility; (5) dihedral torsion angles; (6) hydrophobic scoring matrix. The balance of the weighting parameters is optimized by a grading search based on the average TM-score of 111 training proteins which shows a better performance than using the conventional optimization methods based on the PROSUP database. The algorithm is tested on 500 nonhomologous proteins independent of the training sets. After removing the homologous templates with a sequence identity to the target >30%, in 224 cases, the first template alignment has the correct topology with a TM-score >0.5. Even with a more stringent cutoff by removing the templates with a sequence identity >20% or detectable by PSI-BLAST with an E-value <0.05, MUSTER is able to identify correct folds in 137 cases with the first model of TM-score >0.5. Dependent on the homology cutoffs, the average TM-score of the first threading alignments by MUSTER is 5.1-6.3% higher than that by PPA. This improvement is statistically significant by the Wilcoxon signed rank test with a P-value < 1.0 x 10(-13), which demonstrates the effect of additional structural information on the protein fold recognition. The MUSTER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/MUSTER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号