首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in RVS161 and RVS167, the two yeast amphiphysin homologs, cause very similar growth phenotypes, a depolarized actin cytoskeleton, and a defect in the internalization step of endocytosis. Rvs161p and Rvs167p have been shown to interact in the two-hybrid system, but their localization in the cell may be different thus raising the question whether the interaction is physiologically relevant. Here we demonstrate that the two proteins function together in vivo. We find that the steady state level of Rvs167p is strongly reduced in an rvs161Delta strain. Similarly, the level of Rvs161p is strongly reduced in an rvs167Delta strain. We demonstrate that these reduced protein levels at steady state are due to a decreased stability of either Rvs protein in the absence of the other protein. Furthermore, we find that the amount and ratio of Rvs161p and Rvs167p are critical parameters for receptor-mediated endocytosis. In addition, by using the two-hybrid system we show that the interaction of Rvs167p with actin is not abolished in an abp1Delta strain suggesting that Abp1p is not essential for this interaction.  相似文献   

2.
We have used comprehensive synthetic lethal screens and biochemical assays to examine the biological role of the yeast amphiphysin homologues Rvs161p and Rvs167p, two proteins that play a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. We found that unlike some forms of amphiphysin, Rvs161p-Rvs167p acts as an obligate heterodimer during vegetative growth and neither Rvs161p nor Rvs167p forms a homodimer in vivo. RVS161 and RVS167 have an identical set of 49 synthetic lethal interactions, revealing functions for the Rvs proteins in cell polarity, cell wall synthesis, and vesicle trafficking as well as a shared role in mating. Consistent with these roles, we show that the Rvs167p-Rvs161p heterodimer, like its amphiphysin homologues, can bind to phospholipid membranes in vitro, suggesting a role in vesicle formation and/or fusion. Our genetic screens also reveal that the interaction between Abp1p and the Rvs167p Src homology 3 (SH3) domain may be important under certain conditions, providing the first genetic evidence for a role for the SH3 domain of Rvs167p. Our studies implicate heterodimerization of amphiphysin family proteins in various functions related to cell polarity, cell integrity, and vesicle trafficking during vegetative growth and the mating response.  相似文献   

3.
The yeast amphiphysin homologue Rvs167p plays a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. Rvs167p is a phosphoprotein in vegetatively growing cells and shows increased phosphorylation upon treatment with mating pheromone. Previous work has shown that Rvs167p can be phosphorylated in vitro by the cyclin-dependent kinase Pho85p complexed with its cyclin Pcl2p. Using chymotryptic phosphopeptide mapping, we have identified the sites on which Rvs167p is phosphorylated in vitro by Pcl2p-Pho85p. We have shown that these same sites are phosphorylated in vivo during vegetative growth and that phosphorylation at two of these sites is Pcl-Pho85p dependent. In cells treated with mating pheromone, the MAP kinase Fus3p is needed for full phosphorylation of Rvs167p. Functional genomics and genetics experiments revealed that mutation of other actin cytoskeleton genes compromises growth of a strain in which phosphorylation of Rvs167p is blocked by mutation. Phosphorylation of Rvs167p inhibits its interaction in vitro with Las17p, an activator of the Arp2/3 complex, as well as with a novel protein, Ymr192p. Our results suggest that phosphorylation of Rvs167p by a cyclin-dependent kinase and by a MAP kinase is an important mechanism for regulating protein complexes involved in actin cytoskeleton function.  相似文献   

4.
Loss of function of either the RVS161 or RVS167 Saccharomyces cerevisiae amphiphysin-like gene confers similar growth phenotypes that can be suppressed by mutations in sphingolipid biosynthesis. We performed a yeast two-hybrid screen using Rvs161p as bait to uncover proteins involved in this sphingolipid-dependent suppressor pathway. In the process, we have demonstrated a direct physical interaction between Rvs167p and the two-hybrid interacting proteins, Acf2p, Gdh3p, and Ybr108wp, while also elucidating the Rvs167p amino acid domains to which these proteins bind. By using subcellular fractionation, we demonstrate that Rvs167p, Ybr108wp, Gdh3p, and Acf2p all localize to Rvs161p-containing lipid rafts, thus placing them within a single compartment that should facilitate their interactions. Moreover, our results suggest that Acf2p and Gdh3p functions are needed for suppressor pathway activity. To determine pathway mechanisms further, we examined the localization of Rvs167p in suppressor mutants. These studies reveal roles for Rvs161p and the very long chain fatty acid elongase, Sur4p, in the localization and/or stability of Rvs167p. Previous yeast studies showed that rvs defects could be suppressed by changes in sphingolipid metabolism brought about by deleting SUR4 (Desfarges, L., Durrens, P., Juguelin, H., Cassagne, C., Bonneu, M., and Aigle, M. (1993) Yeast 9, 267-277). Using rvs167 sur4 and rvs161 sur4 double null cells as models to study suppressor pathway activity, we demonstrate that loss of SUR4 does not remediate the steady-state actin cytoskeletal defects of rvs167 or rvs161 cells. Moreover, suppressor activity does not require the function of the actin-binding protein, Abp1p, or Sla1p, a protein that is thought to regulate assembly of the cortical actin cytoskeleton. Based on our results, we suggest that sphingolipid-dependent suppression of rvs defects may not work entirely through regulating changes in actin organization.  相似文献   

5.
The Rab GTPase-activating proteins (GAP) Gyp5p and Gyl1p are involved in the control of polarized exocytosis at the small-bud stage in Saccharomyces cerevisiae. Both Gyp5p and Gyl1p interact with the N-Bin1/Amphiphysin/Rvs167 (BAR) domain protein Rvs167p, but the biological function of this interaction is unclear. We show here that Gyp5p and Gyl1p recruit Rvs167p to the small-bud tip, where it plays a role in polarized exocytosis. In gyp5Δgyl1Δ cells, Rvs167p is not correctly localized to the small-bud tip. Both P473L mutation in the SH3 domain of Rvs167p and deletion of the proline-rich regions of Gyp5p and Gyl1p disrupt the interaction of Rvs167p with Gyp5p and Gyl1p and impair the localization of Rvs167p to the tips of small buds. We provide evidence for the accumulation of secretory vesicles in small buds of rvs167Δ cells and for defective Bgl2p secretion in rvs167Δ cultures enriched in small-budded cells at 13°C, implicating Rvs167p in polarized exocytosis. Moreover, both the accumulation of secretory vesicles in Rvs167p P473L cells cultured at 13°C and secretion defects in cells producing Gyp5p and Gyl1p without proline-rich regions strongly suggest that the function of Rvs167p in exocytosis depends on its ability to interact with Gyp5p and Gyl1p.  相似文献   

6.
An iso-1-cytochrome c-chloramphenicol acetyltransferase fusion protein (iso-1/CAT) was expressed in Saccharomyces cerevisiae and used to delineate two stages in the cytochrome c import pathway in vivo (S. H. Nye and R. C. Scarpulla, Mol. Cell. Biol. 10:5753-5762, 1990 [this issue]). Fusion proteins with the CAT reporter domain in its native conformation were arrested at the initial stage of mitochondrial membrane recognition and insertion. In contrast, those with a deletional disruption of the CAT moiety were relieved of this block and allowed to translocate to the intermembrane space, where they functioned in respiratory electron transfer. In the present study, iso-1/CAT was used to map structural determinants in apoiso-1-cytochrome c involved in the initial step of targeting to the mitochondrial membrane. Carboxy-terminal deletions revealed that one of these determinants consisted of the amino-terminal 68 residues. Deletion mutations either within or at the ends of this determinant destroyed mitochondrial targeting activity, suggesting that functionally important information spans the length of this fragment. Disruption of an alpha-helix near the amino terminus by a helix-breaking proline substitution for leucine 14 also eliminated the targeting activity of the 1 to 68 determinant, suggesting a contribution from this structure. A second, functionally independent targeting determinant was found in the carboxy half of the apoprotein between residues 68 and 85. This determinant coincided with a stretch of 11 residues that are invariant in nearly 100 eucaryotic cytochromes c. Therefore, in lieu of an amino-terminal presequence, apocytochrome c has redundant structural information located in both the amino and carboxy halves of the molecule that can function independently to specify mitochondrial targeting and membrane insertion in vivo.  相似文献   

7.
8.
Pan1p is an essential protein of the yeast Saccharomyces cerevisiae that is required for the internalization step of endocytosis and organization of the actin cytoskeleton. Pan1p, which binds several other endocytic proteins, is composed of multiple protein-protein interaction domains including two Eps15 Homology (EH) domains, a coiled-coil domain, an acidic Arp2/3-activating region, and a proline-rich domain. In this study, we have induced high-level expression of various domains of Pan1p in wild-type cells to assess the dominant consequences on viability, endocytosis, and actin organization. We found that the most severe phenotypes, with blocked endocytosis and aggregated actin, required expression of nearly full length Pan1p, and also required the endocytic regulatory protein kinase Prk1p. The central coiled-coil domain was the smallest fragment whose overexpression caused any dominant effects; these effects were more pronounced by inclusion of the second EH domain. Co-overexpressing nonoverlapping amino- and carboxy-terminal fragments did not mimic the effects of the intact protein, whereas fragments that overlapped within the coiled-coil region could. Yeast two-hybrid and in vivo coimmunoprecipitation analyses suggest that Pan1 may form dimers or higher order oligomers. Collectively, our data support a view of Pan1p as a dimeric/oligomeric scaffold whose functions require both the amino- and carboxy-termini, linked by the central region.  相似文献   

9.
In addition to its well known role in targeting proteins for proteasomal degradation, ubiquitin (Ub) is also involved in promoting internalization of cell surface proteins into the endocytic pathway. Moreover, putative Ub interaction motifs (UIMs) as well as Ub-associated (UBA) domains have been identified in key yeast endocytic proteins (the epsins Ent1 and Ent2, and the Eps15 homolog Ede1). In this study, we characterized the interaction of Ub with the Ede1 UBA domain and with the UIMs of Ent1. Our data suggest that the UIMs and the UBA are involved in binding these proteins to biological membranes. We also show that the Ent1 ENTH domain binds to phosphoinositides in vitro and that Ent1 NPF motifs interact with the EH domain-containing proteins Ede1 and Pan1. Our findings indicate that the ENTH domain interaction with membrane lipids cooperates with the binding of membrane-associated Ub moieties. These events may in turn favor the occurrence of other interactions, for instance EH-NPF recognition, thus stabilizing networks of low affinity binding partners at endocytic sites.  相似文献   

10.
We have used affinity chromatography to identify two proteins that bind to the SH3 domain of the actin cytoskeleton protein Rvs167p: Gyp5p and Gyl1p. Gyp5p has been shown to be a GTPase activating protein (GAP) for Ypt1p, a Rab GTPase involved in ER to Golgi trafficking; Gyl1p is a protein that resembles Gyp5p and has recently been shown to colocalize with and belong to the same protein complex as Gyp5p. We show that Gyl1p and Gyp5p interact directly with each other, likely through their carboxy-terminal coiled-coil regions. In assays of GAP activity, Gyp5p had GAP activity toward Ypt1p and we found that this activity was stimulated by the addition of Gyl1p. Gyl1p had no GAP activity toward Ypt1p. Genetic experiments suggest a role for Gyp5p and Gyl1p in ER to Golgi trafficking, consistent with their biochemical role. Since Rvs167p has a previously characterized role in endocytosis and we have shown here that it interacts with proteins involved in Golgi vesicle trafficking, we suggest that Rvs167p may have a general role in vesicle trafficking.  相似文献   

11.
The dynamin superfamily of large GTPases has been implicated in a variety of distinct intracellular membrane remodeling events. One of these family members, DLP1/Drp1, is similar to conventional dynamins as it contains an N-terminal GTPase domain followed by a middle region (MID), an unconserved region (UC), and a coiled-coil (CC) domain. DLP1 has been shown to function in membrane-based processes distinct from conventional dynamin, most notably mitochondrial fission. In this study, we tested whether the functional specificities of DLP1 and dynamin stems from differences in the individual domains of these proteins by generating dynamin/DLP1 chimeras in which correlate domains had been interchanged. Here we report that three consecutive C-terminal domains of DLP1 (MID-UC-CC) contain information necessary for DLP1-specific function and removing any one of these domains results in a loss of DLP1 function. Importantly, the coiled-coil (CC) domain of DLP1 alone targets specifically and exclusively to mitochondria, implicating its involvement in localizing DLP1 to this organelle in vivo. The mitochondrial targeting information within the DLP1 CC domain is not sufficient to retarget dynamin to mitochondria but is still able to adequately function as an assembly domain in a dynamin background. These data suggest that whereas the GTPase domain of DLP1 provides an enzymatic function, other domains contain information for intermolecular assembly and mitochondrial targeting.  相似文献   

12.
13.
Neurosecretion is critically dependent on the assembly of a macromolecular complex between the SNARE proteins syntaxin, SNAP-25 and synaptobrevin. Evidence indicates that the binding of tomosyn to syntaxin and SNAP-25 interferes with this assembly, thereby negatively regulating both synaptic transmission and peptide release. Tomosyn has two conserved domains: an N-terminal encompassing multiple WD40 repeats predicted to form two β-propeller structures and a C-terminal SNARE-binding motif. To assess the function of each domain, we performed an in vivo analysis of the N- and C- terminal domains of C. elegans tomosyn (TOM-1) in a tom-1 mutant background. We verified that both truncated TOM-1 constructs were transcribed at levels comparable to rescuing full-length TOM-1, were of the predicted size, and localized to synapses. Unlike full-length TOM-1, expression of the N- or C-terminal domains alone was unable to restore inhibitory control of synaptic transmission in tom-1 mutants. Similarly, co-expression of both domains failed to restore TOM-1 function. In addition, neither the N- nor C-terminal domain inhibited release when expressed in a wild-type background. Based on these results, we conclude that the ability of tomosyn to regulate neurotransmitter release in vivo depends on the physical integrity of the protein, indicating that both N- and C-terminal domains are necessary but not sufficient for effective inhibition of release in vivo.  相似文献   

14.
The Saccharomyces cerevisiae SEC65 gene encodes a 32 kDa subunit of yeast signal recognition particle that is homologous to human SRP19. Sequence comparisons suggest that the yeast protein comprises three distinct domains. The central domain (residues 98–171) exhibits substantial sequence similarity to the 144 residue SRP19. In contrast, the N-terminal and C-terminal domains (residues 1–97 and 172–273 respectively) share no similarity to SRP19, with the exception of a cluster of positively charged residues at the extreme C-terminus of both proteins. Here, we report the cloning of a Sec65p homologue from the yeast Candida albicans that shares the same extended domain structure as its S. cerevisiae counterpart. This conservation of sequence is reflected at the functional level, as the C. albicans gene can complement the conditional lethal sec65-1 mutation in S. cerevisiae . In order to examine the role of the N- and C- terminal domains in Sec65p function, we have engineered truncation mutants of S. cerevisiae SEC65 and tested these for complementing activity in vivo and for SRP integrity in vitro . These studies indicate that a minimal Sec65p comprising residues 76–209, which includes the entire central SRP19-like domain, is sufficient for SRP function in yeast.  相似文献   

15.

Background

Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression.

Results

We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway.

Conclusions

This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.  相似文献   

16.
17.
18.
Protein interactions critical to DNA repair and cell cycle control systems are often coordinated by modules that belong to a superfamily of structurally conserved BRCT domains. Because the mechanisms of BRCT interactions and their significance are not well understood, we sought to define the affinity and specificity of those BRCT modules that orchestrate base excision repair and single-strand break repair. Common to these pathways is the essential XRCC1 DNA repair protein, which interacts with at least nine other proteins and DNA. Here, we characterized the interactions of four purified BRCT domains, two from XRCC1 and their two partners from DNA ligase IIIalpha and poly(ADP-ribosyl) polymerase 1. A monoclonal antibody was selected that recognizes the ligase IIIalpha BRCT domain, but not the other BRCT domains, and was used to capture the relevant ligase IIIalpha BRCT complex. To examine the assembly states of isolated BRCT domains and pairwise domain complexes, we used size-exclusion chromatography coupled with on-line light scattering. This analysis indicated that isolated BRCT domains form homo-oligomers and that the BRCT complex between the C-terminal XRCC1 domain and the ligase IIIalpha domain is a heterotetramer with 2:2 stoichiometry. Using affinity capture and surface plasmon resonance methods, we determined that specific heteromeric interactions with high nanomolar dissociation constants occur between pairs of cognate BRCT domains. A structural model for a XRCC1 x DNA ligase IIIalpha heterotetramer is proposed as a core base excision repair complex, which constitutes a scaffold for higher order complexes to which other repair proteins and DNA are brought into proximity.  相似文献   

19.
Many eukaryotic RNA-binding proteins are modified by methylation of arginine residues. The yeast Saccharomyces cerevisiae contains one major arginine methyltransferase, Hmt1p/Rmt1p, which is not essential for normal cell growth. However, cells missing HMT1 and also bearing mutations in the mRNA-binding proteins Npl3p or Cbp80p can no longer survive, providing genetic backgrounds in which to study Hmt1p function. We now demonstrate that the catalytically active form of Hmt1p is required for its activity in vivo. Amino acid changes in the putative Hmt1p S-adenosyl-L-methionine-binding site were generated and shown to be unable to catalyze methylation of Npl3p in vitro and in vivo or to restore growth to strains that require HMT1. In addition these mutations affect nucleocytoplasmic transport of Npl3p. A cold-sensitive mutant of Hmt1p was generated and showed reduced methylation of Npl3p, but not of other substrates, at 14 degrees C. These results define new aspects of Hmt1 and reveal the importance of its activity in vivo.  相似文献   

20.
Saccharomyces cerevisiae cells grown at 24 degrees C acquire thermotolerance and survive exposure to 50 degrees C, but only if they are first incubated at 30 degrees C, the temperature where heat shock genes are activated. We show here that the enzymatic activity of a secretory beta-lactamase fusion protein, pre-accumulated at 37 degrees C in the endoplasmic reticulum, was abolished by exposure of the cells to 50 degrees C. When the cells were returned to 24 degrees C, beta-lactamase activity was resumed. Reactivation occurred in the endoplasmic reticulum, but not in the Golgi apparatus. It was dependent on metabolic energy, but did not require de novo protein synthesis. According to co-immunoprecipitation experiments, immuno-globulin-binding protein (BiP/Kar2p) was associated with the fusion protein. We suggest that recovery from thermal insult involves, in addition to cytoplasmic and nuclear events, refolding of heat-damaged proteins in the endoplasmic reticulum by a heat-resistant machinery, which forms part of a fundamental survival mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号