共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dimerization specificity of P22 and 434 repressors is determined by multiple polypeptide segments. 下载免费PDF全文
The repressor protein of bacteriophage P22 binds to DNA as a homodimer. This dimerization is absolutely required for DNA binding. Dimerization is mediated by interactions between amino acids in the carboxyl (C)-terminal domain. We have constructed a plasmid, p22CT-1, which directs the overproduction of just the C-terminal domain of the P22 repressor (P22CT-1). Addition of P22CT-1 to DNA-bound P22 repressor causes the dissociation of the complex. Cross-linking experiments show that P22CT-1 forms specific heterodimers with the intact P22 repressor protein, indicating that inhibition of P22 repressor DNA binding by P22CT-1 is mediated by the formation of DNA binding-inactive P22 repressor:P22CT-1 heterodimers. We have taken advantage of the highly conserved amino acid sequences within the C-terminal domains of the P22 and 434 repressors and have created chimeric proteins to help identify amino acid regions required for dimerization specificity. Our results indicate that the dimerization specificity region of these proteins is concentrated in three segments of amino acid sequence that are spread across the C-terminal domain of each of the two phage repressors. We also show that the set of amino acids that forms the cooperativity interface of the P22 repressor may be distinct from those that form its dimer interface. Furthermore, cooperativity studies of the wild-type and chimeric proteins suggest that the location of cooperativity interface in the 434 repressor may also be distinct from that of its dimerization interface. Interestingly, changes in the dimer interface decreases the ability of the 434 repressor to discriminate between its wild-type binding sites, O(R)1, O(R)2, and O(R)3. Since 434 repressor discrimination between these sites depends in large part on the ability of this protein to recognize sequence-specific differences in DNA structure and flexibility, this result indicates that the C-terminal domain is intimately involved in the recognition of sequence-dependent differences in DNA structure and flexibility. 相似文献
3.
Dimerization of human recombinant resistin involves covalent and noncovalent interactions 总被引:4,自引:0,他引:4
Raghu P Ghosh S Soundarya K Haseeb A Aruna B Ehtesham NZ 《Biochemical and biophysical research communications》2004,313(3):642-646
Resistin, an adipocyte secreted cysteine rich hormone has been implicated as molecular link between obesity and type 2 diabetes in a murine model. Although, at the protein level mouse and human resistin show remarkable similarities with respect to conserved cysteine residues, the physiological role of human resistin is not yet clear. In the present study we describe the purification and refolding of human recombinant resistin using two different refolding processes. Gel filtration analysis of protein refolded by both the methods revealed that human recombinant resistin, like mouse resistin, has a tendency to form dimers. Interestingly, dimerization of resistin appears to be mediated by both covalent (disulfide bond mediated) and non-covalent interactions as seen on reducing and non-reducing SDS-PAGE. Circular dichroism spectral analysis revealed that human resistin peptide backbone is a mixture of alpha-helical and beta-sheet conformation with significant amounts of unordered structure, similar to the mouse resistin. It is likely that the first cysteine (Cyst22) of human resistin, which is equivalent to mouse Cyst26, may be involved in stabilizing the dimers through covalent interaction. 相似文献
4.
5.
6.
The binding of RecA protein to duplex DNA molecules is directional and is promoted by a single stranded region. 总被引:2,自引:0,他引:2 下载免费PDF全文
RecA protein from E. coli binds more strongly to single stranded DNA than to duplex molecules. Using duplex DNA that contains single stranded gaps, we have studied the protection by RecA protein at various concentrations, of restriction sites as a function of their distance from the single stranded region. We show that the binding of RecA protein, initiated in the single stranded region, extends progressively along the adjoining duplex in the 5' to 3' direction with respect to the single stranded region. The strand exchange reaction is known to proceed in the same direction. 相似文献
7.
Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. 下载免费PDF全文
Single-particle tracking (SPT) was used to determine the mobility characteristics of MHC (major histocompatibility complex) class I molecules at the surface of HeLa cells at 22 degrees C and on different time scales. MHC class I was labeled using the Fab fragment of a monoclonal antibody (W6/32), covalently bound to either R-phycoerythrin or fluorescent microspheres, and the particles were tracked using high-sensitivity fluorescence imaging. Analysis of the data for a fixed time interval suggests a reasonable fit to a random diffusion model. The best fit values of the diffusion coefficient D decreased markedly, however, with increasing time interval, demonstrating the existence of anomalous diffusion. Further analysis of the data shows that the diffusion is anomalous over the complete time range investigated, 4-300 s. Fitting the results obtained with the R-phycoerythrin probe to D = D0talpha-1, where Do is a constant and t is the time, gave D0 = (6.7 +/- 4.5) x 10(-11) cm2 s-1 and alpha = 0.49 +/- 0.16. Experiments with fluorescent microspheres were less reproducible and gave slower anomalous diffusion. The R-phycoerythrin probe is considered more reliable for fluorescent SPT because it is small (11 x 8 nm) and monovalent. The type of motion exhibited by the class I molecules will greatly affect their ability to migrate in the plane of the membrane. Anomalous diffusion, in particular, greatly reduces the distance a class I molecule can travel on the time scale of minutes. The present data are discussed in relation to the possible role of diffusion and clustering in T-cell activation. 相似文献
8.
Surface exclusion specificity of the TraT lipoprotein is determined by single alterations in a five-amino-acid region of the protein 总被引:3,自引:0,他引:3
Jacqueline L. Harrison Ian M. Taylor Karen Platt C. David O'Connor 《Molecular microbiology》1992,6(19):2825-2832
The TraT protein is a highly cell-surface-exposed lipoprotein specified by F-like plasmids that confers serum resistance and blocks the conjugative transfer of plasmids to cells bearing identical or closely related plasmids, a process known as surface exclusion. The TraT protein specified by the antibiotic-resistance plasmid R6-5 was purified to apparent homogeneity. When added to mating mixtures, TraT blocked the transfer of plasmids belonging to Surface Exclusion Group IV (Sfx IV) but had no significant effect on the transfer of plasmids belonging to other groups. Additionally, the purified protein has a protective effect on bacterial cells incubated in serum, indicating that it does not have to be located on the cell surface to mediate serum resistance. To localize regions of the protein that were responsible for surface exclusion specificity, the amino acid sequence of the TraT protein specified by CoIB2-K98 (Sfx II) was determined by cloning and sequencing of the corresponding gene. Comparison of the derived sequence with those of the F and R100-1 proteins indicated that surface exclusion specificity of TraT is determined by single alterations in a five-amino-acid region (residues 116-120). This was confirmed by segment swapping experiments in which the specificity of the R6-5 TraT protein (Sfx IV) was switched to that of the CoIB2-K98 protein (Sfx II). Our results suggest that the region defined by residues 116-120 is located on the external face of the outer membrane and interacts specifically with the donor cell in surface exclusion. 相似文献
9.
R-CMV, a subgroup II strain of cucumber mosaic cucumovirus (CMV) induces a very strong stunting response in Nicotiana glutinosa plants, while Trk7-CMV causes green mosaic in this host. The genetic determinant of this phenotype was mapped to a 534-nucleotide region at the 3' end of RNA3 with biologically active, full-length cDNA clones of R-CMV and Trk7-CMV and RNA3 chimeras of the two strains. Within this region, R-CMV differs from Trk7-CMV by a single amino acid at position 193 in the coat protein. Changing the codon for Lys at this position to Asn or Ser, by site-directed mutagenesis, also changed the phenotype of the viruses from green mosaic to induction of stunting. Profound differences in both the spread and the accumulation of the viruses causing stunting and green mosaic were observed, although these did not correlate with the host specificity of stunting. Since expression of R-CMV coat protein with the PVX vector did not cause stunting, the data suggest that the presence of other CMV components is necessary for the induction of this symptom. 相似文献
10.
Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein 总被引:5,自引:0,他引:5 下载免费PDF全文
Gardner JP Frolov I Perri S Ji Y MacKichan ML zur Megede J Chen M Belli BA Driver DA Sherrill S Greer CE Otten GR Barnett SW Liu MA Dubensky TW Polo JM 《Journal of virology》2000,74(24):11849-11857
The ability to target antigen-presenting cells with vectors encoding desired antigens holds the promise of potent prophylactic and therapeutic vaccines for infectious diseases and cancer. Toward this goal, we derived variants of the prototype alphavirus, Sindbis virus (SIN), with differential abilities to infect human dendritic cells. Cloning and sequencing of the SIN variant genomes revealed that the genetic determinant for human dendritic cell (DC) tropism mapped to a single amino acid substitution at residue 160 of the envelope glycoprotein E2. Packaging of SIN replicon vectors with the E2 glycoprotein from a DC-tropic variant conferred a similar ability to efficiently infect immature human DC, whereupon those DC were observed to undergo rapid activation and maturation. The SIN replicon particles infected skin-resident mouse DC in vivo, which subsequently migrated to the draining lymph nodes and upregulated cell surface expression of major histocompatibility complex and costimulatory molecules. Furthermore, SIN replicon particles encoding human immunodeficiency virus type 1 p55(Gag) elicited robust Gag-specific T-cell responses in vitro and in vivo, demonstrating that infected DC maintained their ability to process and present replicon-encoded antigen. Interestingly, human and mouse DC were differentially infected by selected SIN variants, suggesting differences in receptor expression between human and murine DC. Taken together, these data illustrate the tremendous potential of using a directed approach in generating alphavirus vaccine vectors that target and activate antigen-presenting cells, resulting in robust antigen-specific immune responses. 相似文献
11.
12.
Lotti LV Mottola G Torrisi MR Bonatti S 《The Journal of biological chemistry》1999,274(15):10413-10420
To establish the specific contribution to protein topology of KKXX and KDEL retrieval motifs, we have determined by immunogold electron microscopy and cell fractionation the intracellular distribution at steady state of the transmembrane and anchorless versions of human CD8 protein, tagged with KKXX (CD8-E19) and KDEL (CD8-K), respectively, and stably expressed in epithelial rat cells (Martire, G., Mottola, G., Pascale, M. C., Malagolini, N., Turrini, I., Serafini-Cessi, F., Jackson, M. R., and Bonatti, S. (1996) J. Biol. Chem. 271, 3541-3547). The CD8-E19 protein is represented by a single form, initially O-glycosylated: only about half of it is located in the endoplasmic reticulum, whereas more than 30% of the total is present in the intermediate compartment and cis-Golgi complex. In the latter compartments, CD8-E19 colocalizes with beta-coat protein (COP) (COPI component) and shows the higher density of labeling. Conversely, about 90% of the total CD8-KDEL protein is localized in clusters on the endoplasmic reticulum, where significant co-localization with Sec-23p (COPII component) is observed, and unglycosylated and initially O-glycosylated forms apparently constitute a single pool. Altogether, these results suggest that KKXX and KDEL retrieval motifs have different topological effects on theirs own at steady state: the first results in a specific enrichment in the intermediate compartment and cis-Golgi complex, and the latter dictates residency in the endoplasmic reticulum. 相似文献
13.
The membrane topology of proton-pumping nicotinamide-nucleotide transhydrogenase from Escherichia coli was determined by site-specific chemical labeling. A His-tagged cysteine-free transhydrogenase was used to introduce unique cysteines in positions corresponding to potential membrane loops. The cysteines were reacted with fluorescent reagents, fluorescein 5-maleimide or 2-[(4'-maleimidyl)anilino]naphthalene-6-sulfonic acid, in both intact cells and inside-out vesicles. Labeled transhydrogenase was purified with a small-scale procedure using a metal affinity resin, and the amount of labeling was measured as fluorescence on UV-illuminated acrylamide gels. The difference in labeling between intact cells and inside-out vesicles was used to discriminate between a periplasmic and a cytosolic location of the residues. The membrane region was found to be composed of 13 helices (four in the alpha-subunit and nine in the beta-subunit), with the C terminus of the alpha-subunit and the N terminus of the beta-subunit facing the cytosolic and periplasmic sides, respectively. These results differ from previous models with regard to both number of helices and the relative location and orientation of certain helices. This study constitutes the first in which all transmembrane segments of transhydrogenase have been experimentally determined and provides an explanation for the different topologies of the mitochondrial and E. coli transhydrogenases. 相似文献
14.
Swem LR Kraft BJ Swem DL Setterdahl AT Masuda S Knaff DB Zaleski JM Bauer CE 《The EMBO journal》2003,22(18):4699-4708
All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB-RegA signal transduction cascade to control a wide variety of oxygen-responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal-dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel 'redox-box' that is present in sensor kinases from diverse species of bacteria. 相似文献
15.
Karin Fellinger Ulrich Rothbauer Max Felle Gernot Längst Heinrich Leonhardt 《Journal of cellular biochemistry》2009,106(4):521-528
DNA methylation is a major epigenetic modification and plays a crucial role in the regulation of gene expression. Within the family of DNA methyltransferases (Dnmts), Dnmt3a and 3b establish methylation marks during early development, while Dnmt1 maintains methylation patterns after DNA replication. The maintenance function of Dnmt1 is regulated by its large regulatory N‐terminal domain that interacts with other chromatin factors and is essential for the recognition of hemi‐methylated DNA. Gelfiltration analysis showed that purified Dnmt1 elutes at an apparent molecular weight corresponding to the size of a dimer. With protein interaction assays we could show that Dnmt1 interacts with itself through its N‐terminal regulatory domain. By deletion analysis and co‐immunoprecipitations we mapped the dimerization domain to the targeting sequence TS that is located in the center of the N‐terminal domain (amino acids 310–629) and was previously shown to mediate replication independent association with heterochromatin at chromocenters. Further mutational analyses suggested that the dimeric complex has a bipartite interaction interface and is formed in a head‐to‐head orientation. Dnmt1 dimer formation could facilitate the discrimination of hemi‐methylated target sites as has been found for other palindromic DNA sequence recognizing enzymes. These results assign an additional function to the TS domain and raise the interesting question how these functions are spatially and temporarily co‐ordinated. J. Cell. Biochem. 106: 521–528, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
16.
Broillet MC 《The Journal of biological chemistry》2000,275(20):15135-15141
The activation of cyclic nucleotide-gated (CNG) channels is the final step in olfactory and visual transduction. Previously we have shown that, in addition to their activation by cyclic nucleotides, nitric oxide (NO)-generating compounds can directly open olfactory CNG channels through a redox reaction that results in the S-nitrosylation of a free SH group on a cysteine residue. To identify the target site(s) of NO, we have now mutated the four candidate intracellular cysteine residues Cys-460, Cys-484, Cys-520, and Cys-552 of the rat olfactory rCNG2 (alpha) channel into serine residues. All mutant channels continue to be activated by cyclic nucleotides, but only one of them, the C460S mutant channel, exhibited a total loss of NO sensitivity. This result was further supported by a similar lack of NO sensitivity that we found for a natural mutant of this precise cysteine residue, the Drosophila melanogaster CNG channel. Cys-460 is located in the C-linker region of the channel known to be important in channel gating. Kinetic analyses suggested that at least two of these Cys-460 residues on different channel subunits were involved in the activation by NO. Our results show that one single cysteine residue is responsible for NO sensitivity but that several channel subunits need to be activated for channel opening by NO. 相似文献
17.
Boots M 《The American naturalist》2011,178(2):214-220
Given the ubiquity of parasites, it is critical to understand the evolution of defense against them. Using a selection experiment performed across a broad range of host resources, I examine how resistance and associated costs depend on resource availability. Higher resistance to a natural viral pathogen evolves in a host when there are more resources, and this directly suggests a resource-dependent cost of the evolution of resistance. Resistance is traded off with host growth rate, and the costs are stronger under poor resource environments, although adaptation to poor environments reduces these costs. The level of resistance and the costs that are paid for this resistance depend on both the selection environment and the environment in which hosts are assayed, implying that different resistance mechanisms may evolve in different environments. More broadly, the results emphasize that environmental heterogeneity in time and space may underpin variation in immune diversity. 相似文献
18.
Functionality of mutations at conserved nucleotides in eukaryotic SECIS elements is determined by the identity of a single nonconserved nucleotide. 总被引:2,自引:3,他引:2 下载免费PDF全文
In eukaryotes, the specific cotranslational insertion of selenocysteine at UGA codons requires the presence of a secondary structural motif in the 3' untranslated region of the selenoprotein mRNA. This selenocysteine insertion sequence (SECIS) element is predicted to form a hairpin and contains three regions of sequence invariance that are thought to interact with a specific protein or proteins. Specificity of RNA-binding protein recognition of cognate RNAs is usually characterized by the ability of the protein to recognize and distinguish between a consensus binding site and sequences containing mutations to highly conserved positions in the consensus sequence. Using a functional assay for the ability of wild-type and mutant SECIS elements to direct cotranslational selenocysteine incorporation, we have investigated the relative contributions of individual invariant nucleotides to SECIS element function. We report the novel finding that, for this consensus RNA motif, mutations at the invariant nucleotides are tolerated to different degrees in different elements, depending on the identity of a single nonconserved nucleotide. Further, we demonstrate that the sequences adjacent to the minimal element, although not required for function, can affect function through their propensity to base pair. These findings shed light on the specific structure these conserved sequences may form within the element. This information is crucial to the design of strategies for the identification of SECIS-binding proteins, and hence the elucidation of the mechanism of selenocysteine incorporation in eukaryotes. 相似文献
19.
Schinke T Haberland M Jamshidi A Nollau P Rueger JM Amling M 《Biochemical and biophysical research communications》2004,315(2):356-362
Lnk, SH2-B, and APS form a conserved adaptor protein family. All of those proteins are expressed in mast cells and their possible functions in signaling through c-Kit or FcRI have been speculated. To investigate roles of Lnk, SH2-B or APS in mast cells, we established IL-3-dependent mast cells from Ink-/-, SH2-B-/-, and APS -/- mice. IL-3-dependent growth of those cells was comparable. Proliferation or adhesion mediated by c-Kit as well as degranulation induced by cross-linking FcRI were normal in the absence of Lnk or SH2-B. In contrast, APS-deficient mast cells showed augmented degranulation after cross-linking FcRI compared to wild-type cells, while c-Kit-mediated proliferation and adhesion were kept unaffected. APS-deficient mast cells showed reduced actin assembly at steady state, although their various intracellular responses induced by cross-linking FcRI were indistinguishable compared to wild-type cells. Our results suggest potential roles of APS in controlling actin cytoskeleton and magnitude of degranulation in mast cells. 相似文献
20.
In order to investigate the compensation mechanism of a trans-membrane helix in response to hydrophobic mismatch, the tilt and rotation angles of the trans-membrane helix of Vpu aligned in lipid bilayers of various thickness were determined using orientation-dependent frequencies obtained from solid-state NMR experiments of aligned samples. A tilt angle of 18 degrees was observed in 18:1-O-PC/DOPG (9:1) lipid bilayers, which have a hydrophobic thickness that approximately matches the hydrophobic length of the trans-membrane helix of Vpu. Upon decreasing the hydrophobic thickness of lipid bilayers, no significant change in rotation angle was observed. However, the tilt angle increased systematically with increasing positive mismatch to 27 degrees in 14:0-O-PC/DMPG (9:1), 35 degrees in 12:0-O-PC/DLPG (9:1), and 51 degrees in 10:0 PC/10:0 PG (9:1) lipid bilayers, indicating that the change in tilt angle of the trans-membrane helix is a principal compensation mechanism for hydrophobic mismatch. In addition, the distinctive kink in the middle of the helix observed in 18:1 bilayers disappears in thinner bilayers. Although the opposite of what might be expected, this finding suggests that a helix kink may also be a part of the hydrophobic matching mechanism for trans-membrane helices. 相似文献