首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The cyclic AMP-dependent protein kinase activity-ratio assay was investigated by comparing histone and a synthetic peptide, malantide [Malencik & Anderson (1983) Anal. Biochem. 132, 32-40], as substrates. 2. In several tissues the activity ratio was higher when assayed with histone as the substrate; this result was obtained in control tissues and also in those incubated with agents known to increase cyclic AMP. The effect of these agents to increase the activity ratio was more clearly demonstrated with malantide. 3. The higher activity ratios observed with histone are due to: (a) measurement of phosphorylation not catalysed by cyclic AMP-dependent protein kinase; (b) activation of cyclic AMP-dependent protein kinase by histone during the assay. 4. When tissues were homogenized in buffers without NACl, lower activity ratios were found, owing to the catalytic subunit being artifactually removed from the supernatant. 5. We conclude that the measured activity ratio more faithfully reflects that in the tissue when NaCl is included in the homogenization buffer and malantide is used in the assay. This was confirmed in experiments where cyclic AMP-dependent protein kinase was added to the tissue before homogenization, and no dissociation of the exogenous enzyme was observed.  相似文献   

2.
1. A factor which modulates the activity of cyclic AMP-dependent protein kinase copurifies from rat adipocytes with an inhibitor of adenylate cyclase. Purification and stability studies suggest that both effects reside in a single factor previously referred to as a feedback regulator. 2. The magnitude and direction of the feedback regulator effect on cyclic AMP-dependent protein kinase activity was dependent on the concentration of feedback regulator and the concentration and type of protein substrate. Using histone type IIA as substrate, feedback regulator was inhibitory at low histone concentrations and stimulatory at high concentrations. Preincubation of protein kinase with feedback regulator resulted in inhibition at all histone concentrations. With some protein substrates, e.g. histone f2b and casein, inhibition was observed at all histone concentrations. 3. The stimulation of histone type IIA phosphorylation resulted from an increased V with no effect on either the apparent Ka for cyclic AMP or the Km for ATP. Time course studies suggest that feedback regulator increased the rate of phosphorylation without increasing the total number of phosphorylation sites. Increased histone phosphorylation was observed regardless of whether the cyclic AMP-dependent protein kinase was peak I or peak II (off Deae-cellulose), isolated from bovine or rabbit skeletal muscle or rat heart. A small stimulation was observed using cyclic GMP-dependent protein kinase. 4. These results indicate that feedback regulator can inhibit or stimulate protein kinase, an effect which is probably substrate directed, and depends on the reaction conditions. Whether feedback regulator modulated protein phosphorylation in vivo in addition to its inhibition of adenylate cyclase is unknown. However, stimulation of protein kinase activity in the presence of cyclic AMP is a valuable and rapid assay for monitoring feedback regulator fractions during purification procedures.  相似文献   

3.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

4.
Guanosine 3′,5′-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3′,5′-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-folds less than that of cylic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic. AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophophorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

5.
The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

6.
Analogues of the synthetic substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly in which the serine is replaced by other amino acids inhibited the activity of the catalytic subunit of cyclic AMP-dependent protein kinase from beef skeletal muscle (Peak I). All of the analogues were competitive with respect to peptide substrate but apparent Ki values varied depending on the particular amino acid that was substituted for serine. Inhibition was also competitive with respect to mixed histone as determined in experiments utilizing one of the analogues. Acetylation of the terminal amino group of Leu-Arg-Arg-Ala-Ser-Leu-Gly lowered the Km for this substrate from 16 micrometer to 3 micrometer, but a similar modification of the inhibitory analogue Leu-Arg-Arg-Ala-Ala-Leu-Gly resulted in no major change in the Ki value. An amount of inhibitory peptide sufficient to inhibit the cyclic AMP-dependent protein kinase by 90% caused less than 10% inhibition of several cyclic AMP-independent protein kinases indicating a high degree of specificity of inhibition by the peptide analogues. The experiments show that synthetic peptide analogues could be useful in identifying phosphorylation reactions catalyzed by cyclic AMP-dependent protein kinase as distinguished from other protein kinase reactions.  相似文献   

7.
Abstract— Microsomes from rat brain exhibited protein kinase activity which was stimulated by cyclic AMP when assayed in the presence of exogenous protein substrate, such as thymus histone. In the absence of exogenous substrate some phosphorylation of microsomal protein occurred, but no stimulation by cyclic AMP could be discerned, probably because of limitations of substrate. The maximal activity of microsomal protein kinase observed in the presence of saturating concentrations of histone and the optimal concentration (5 μ m ) of cyclic AMP remained essentially unchanged from birth to early adulthood, but the magnitude of the stimulation by cyclic AMP was significantly higher at birth than at 30 days of age. Brain ribosomal proteins could be phosphorylated by the cyclic AMP-dependent brain protein kinase. Their total capacity for acceptance of phosphate by means of this phosphorylation reaction remained unchanged throughout the postnatal development of the brain. Our results are consistent with the possibility that phosphorylation of ribosomal protein mediated by cyclic AMP-dependent protein kinase may play a a role in the postnatal regulation of cerebral protein synthesis, as a result of the changes in the levels of cyclic AMP known to occur in brain during postnatal maturation.  相似文献   

8.
1. Protein kinase activities in homogenates of rat islets of Langerhans were studied. 2. On incubation of homogenates with [gamma-32P]ATP, incorporation of 32P into protein occurred: this phosphorylation was neither increased by cyclic AMP nor decreased by the cyclic AMP-dependent protein kinase inhibitor described by Ashby & Walsh [(1972) J. Biol. Chem. 247, 6637--6642]. 3. On incubation of homogenates with [gamma-32P]ATP and histone as exogenous substrate for phosphorylation, incorporation of 32P into protein was stimulated by cyclic AMP (approx. 2.5-fold) and was inhibited by the cyclic AMP-dependent protein kinase inhibitor. In contrast, when casein was used as exogenous substrate, incorporation of 32P into protein was not stimulated by cyclic AMP, nor was it inhibited by the cyclic AMP-dependent protein kinase inhibitor. 4. DEAE-cellulose ion-exchange chromatography resolved four peaks of protein kinase activity. One species was the free catalytic subunit of cyclic AMP-dependent protein kinase, two species corresponded to 'Type I' and 'Type II' cyclic AMP-dependent protein kinase holoenzymes [see Corbin, Keely & Park (1975) J. Biol. Chem. 250, 218--225], and the fourth species was a cyclic AMP-independent protein kinase. 5. Determination of physical and kinetic properties of the protein kinases showed that the properties of the cyclic AMP-dependent activities were similar to those described in other tissues and were clearly distinct from those of the cyclic AMP-independent protein kinase. 6. The cyclic AMP-independent protein kinase had an s20.w of 5.2S, phosphorylated a serine residue(s) in casein and was not inhibited by the cyclic AMP-dependent protein kinase inhibitor. 7. These studies demonstrate the existence in rat islets of Langerhans of multiple forms of cyclic AMP-dependent protein kinase and also the presence of a cyclic AMP-independent protein kinase distinct from the free catalytic subunit of cyclic AMP-dependent protein kinase. The presence of the cyclic AMP-independent protein kinase may account for the observed characteristics of 32P incorporation into endogenous protein in homogenates of rat islets.  相似文献   

9.
The substrate specificities of cyclic GMP-dependent and cyclic AMP-dependent protein kinases have been compared by kinetic analysis using synthetic peptides as substrates. Both enzymes catalyzed the transfer of phosphate from ATP to calf thymus histone H2B, as well as to two synthetic peptides, Arg-Lys-Arg-Ser32-Arg-Lys-Glu and Arg-Lys-Glu-Ser36-Tyr-Ser-Val, corresponding to the amino acid sequences around serine 32 and serine 36 in histone H2B. Serine 38 in the latter peptide was not phosphorylated by either enzyme. Cyclic GMP-dependent kinase and cyclic AMP-dependent kinase catalyzed the incorporation of 1.1 and 2.0 mol of phosphate/mol of histone H2B, respectively. The phosphorylation of histone H2B, respectively. The phosphorylation of histone H2B by cyclic GMP-dependent kinase showed two distinct optima as the magnesium concentration was increased. However, the phosphorylation of either synthetic peptide by this enzyme was depressed at high magnesium concentrations. As the pH of reaction mixtures was elevated from pH 6 to pH 9, the rate of phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase continually increased. Acetylation of the NH2 terminus of the peptide did not qualitatively affect this pH profile, but did increase the Vmax value of the enzyme 3-fold. The apparent Km and Vmax values for the phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase were 21 microM and 4.4 mumol/min/mg, respectively. The synthetic peptide Arg-Lys-Glu-Ser36-Tyr-Ser-Val was a relatively poor substrate for cyclic GMP-dependent kinase, exhibiting a Km value of 732 microM, although the Vmax was 12 micromol/min/mg. With histone H2B as substrate for the cyclic GMP-dependent kinase, two different Km values were apparent. The Km values for cyclic AMP-dependent kinase for either synthetic peptide were approximately 100 microM, but the Vmax for Arg-Lys-Arg-Ser32-Arg-Lys-Glu was 1.1 mumol/min/mg, while the Vmax for Arg-Lys-Glu-Ser36-Tyr-Ser-Val was 16.5 mumol/min/mg. These data suggest that although the two cyclic nucleotide-dependent protein kinases have similar substrate specificities, the determinants dictated by the primary sequence around the two phosphorylation sites in histone H2B are different for the two enzymes.  相似文献   

10.
Cyclic AMP-dependent and cyclic GMP-dependent protein kinases (protein kinases A and G, respectively) utilize the same phosphate acceptor proteins when assayed in in vitro systems. Nevertheless, protein kinase A phosphorylates preferentially free histone, whereas protein kinase G greatly favors the histone which is associated with polydeoxyribonucleotide. On the other hand, when cytoplasmic soluble substrates such as phosphorylase kinase are used, the reactions are always more favorable for protein kinase A rather than for protein kinase G. Available evidence implies that the topographic relationship between enzyme and substrate may be an important determining factor for the functional specificities of these two classes of protein kinases.  相似文献   

11.
Native polyacrylamide gels have been used to resolve protein kinase isoenzymes from cultured cells and the protein kinases have been identified by carrying out phosphorylation reactions in the gel. Following electrophoresis, the gels were incubated with histome and [γ-32P]ATP. The gels were then thoroughly washed and dried down, and the protein kinases were located by autoradiography. Protein kinase activity as measured in the gel system was a linear function of cytosol protein concentration up to about 100 μg per channel and incorporation of 32P into histone was time dependent. Three bands of protein kinase activity were resolved in cytosol samples from baby hamster kidney (BHK) fibroblasts. The band with the lowest relative mobility utilized histone IIA or casein equally well as substrate protein whereas bands 2 and 3 demonstrated a clear preference for histone. Bands 2 and 3 displayed a relative mobility in electrophoresis that was identical to that observed for cyclic AMP-dependent protein kinases I and II from rat liver. Treatment of cyctosol samples with cyclic AMP prior to electrophoresis resulted in the disappearance of cyclic AMP-dependent protein kinases from the gel profile. This method was employed to identify bands 2 and 3 as cyclic AMP-dependent protein kinases. The protein kinases in growth-arrested cells were compared with proliferating cells. We have observed a 3.5-fold increase in the activity of Type II protein kinase as the cells arrest growth in G1 phase of the cell cycle. This increase in Type II is correlated with the increase in cells blocked in G1 and a decrease in II Type activity appears to be an early event in permitting cells to leave G1 and resume growth.  相似文献   

12.
The 10000 X g supernatant fraction of brown fat from newborn rats catalyzed the cyclic AMP-dependent phosphorylation of both histone and a preparation of proteins from the same subcellular fraction (endogenous proteins). The apparent affinity for ATP was lower for the phosphorylation of the endogenous proteins than for the phosphorylation of histone. In order to discover whether the phosphorylation of histone and the endogenous proteins were catalyzed by different enzymes, the 100000 X g supernatant was fractionated by ion-exchange and adsorption chromatography. Three different cyclic AMP-dependent protein kinases and one cyclic AMP-independent protein kinase were separated and partially purified. Each of these enzymes catalyzed the phosphorylation of both substrates, and the difference in apparent Km for ATP remained. Neither affinity chromatography on histone-Sepharose, nor electrophoresis on polyacrylamide gels resulted in the separation of the phosphorylation of histone from that of the endogenous proteins of any of the partially purified kinases. Moreover, experiments in which the phosphorylated substrates were separated by differential precipitation with trichloroacetic acid showed that the endogenous proteins competitively inhibited the phosphorylation of lysine-rich histone. It is concluded that each of the partially purified kinase preparations contains protein kinase, which catalyzes the phosphorylation of both substrates. The difference in apparent Km for ATP was found to be due to the presence in the endogenous protein preparation of a low molecular weight compound which competes with ATP. This was not ATP nor the modulator protein. The ratio of the phosphorylation of endogenous proteins to that of histone was much higher for the cyclic AMP-independent kinase preparation than for the other enzymes. Electrophoresis of the endogenous substrates in the presence of sodium dodecyl sulphate showed that the enzyme phosphorylated a greater number of proteins than did the cyclic AMP-dependent kinases. The phosphorylation of endogenous proteins relative to that of histone was significantly lower for one of the cyclic AMP-dependent kinases than for the other two. This difference was not reflected in a different pattern of phosphorylation of the individual proteins of the endogenous mixture.  相似文献   

13.
Protein kinase activity of lymphocytes isolated from human subjects was assayed using histone as substrate. The activity was stimulated about twofold by cyclic AMP and total enzyme activity, determined in the presence of cyclic AMP, was inhibited by 65% by the specific heat-stable inhibitor of cyclic AMP-dependent protein kinase. Histone phosphorylation was not stimulated by cyclic GMP in the presence of the inhibitor. Cyclic AMP-dependent protein kinase could be activated in vitro by incubating intact cells with isoproterenol or with forskolin and was reflected by a significant (P less than 0.05) increase in the protein kinase activity ratio. In contrast to these well-characterized adenylate cyclase activators, incubating cells for up to 2 hr in vitro in the presence of the specific beta-blocker propranolol had no significant effect on the amount of cyclic AMP-dependent protein kinase that was in the activated state. When compared in subjects between the ages of 21 and 74 years, lymphocyte protein kinase activity was unaltered by age or gender. These results indicate that cyclic nucleotide-dependent protein kinase is of the cyclic AMP-dependent variety in the human lymphocyte. A low amount of the cyclic AMP-dependent activity (about 15%) is in the already activated state in freshly isolated cells, and this is not further reduced by incubation in vitro or by beta-blockade. In contrast to previously reported changes in the capacity to synthesize cyclic AMP, lymphocyte protein kinase is unaltered by gender or age in human subjects.  相似文献   

14.
N-Bromosuccinimide cleavage of a lysine-rich histone fraction (histone III-S) yields a peptide substrate, purified by reverse-phase h.p.l.c., for the Ca2+ + phospholipid-dependent protein kinase (protein kinase C). This substrate displays no reactivity with the cyclic AMP-dependent protein kinase, and may prove useful for the detection of protein kinase C activity in crude tissue extracts.  相似文献   

15.
The effects of hormonal status on protein kinase activity was examined in homogenates of rat liver. Protein kinase activity was evaluated from incorporation of 32P from [γ-32P]ATP into protamine or histone as receptor substrates. Protamine phosphorylation in the presence or absence of cyclic AMP exceeded histone phosphorylation by at least a factor or two. Hypophysectomy markedly increased protamine phosphorylation in the presence or absence of saturating amounts of cyclic AMP. In contrast, hypophysectomy only slightly increased cyclic AMP independent phosphorylation of histone. These results could not be accounted for by differences in ATPase or protein phosphase activities. Cortisone (2 mg/day × 3) decreased total protein kinase activity in livers of hypophysectomized rats when protamine was substrate, but had no effect on the total activity toward histone. Growth hormone (100 μg/day × 3) significantly increased histone, but not protamine phosphorylation in livers of hypophysectomized rats. Administration of 5 μg of triiodothyronine/day to hypophysectomized rats also markedly increased the phosphorylation of histone, but not protamine when saturating amounts of cyclic AMP were present. These results support the hypothesis that liver may contain more than one type of protein kinase activity and that the different protein kinase activities can be separately affected by hormones. Such control distal to cyclic AMP might allow selective modulation of cyclic AMP-dependent processes in cells which carry out more than one such process.  相似文献   

16.
The distribution of protein phosphokinase (EC 2.7.1.37) activities has been established in horse thyroid nuclei. The presence of several enzyme activities has been demonstrated, two of which are clearly distinct. The first one acts on histone as substrate and is activated by cyclic AMP. Physico-chemical properties of this nuclear cyclic AMP-dependent histone kinase and of the cytosol histone kinase are different, demonstrating the absence of a contamination from the cytosol. The second enzyme acts on casein as substrate and is not stimulated by cyclic AMP POR CYCLIC GMP. The findings are consistent with the observation of thyrotropin stimulation of histone phosphorylation in thyroid nuclei.  相似文献   

17.
Native polyacrylamide gels have been used to resolve protein kinase isoenzymes from cultured cells and the protein kinases have been identified by carrying out phosphorylation reactions in the gel. Following electrophoresis the gels were incubated with histone and [gamma-32P]ATP. The gels were then thoroughly washed and dried down, and the protein kinases were located by autoradiography. Protein kinase activity as measured in the gel system was a linear function of cytosol protein concentration up to about 100 microgram per channel and incorporation of 32P into histone was time dependent. Three bands of protein kinase activity were resolved in cytosol samples from baby hamster kidney (BHK) fibroblasts. The band with the lowest relative mobility utilized histone IIA or casein equally well as substrate protein whereas bands 2 and 3 demonstrated a clear preference for histone. Bands 2 and 3 displayed a relative mobility in electrophoresis that was identical to that observed for cyclic AMP-dependent protein kinases I and II from rat liver. Treatment of cytosol samples with cyclic AMP prior to electrophoresis resulted in the disappearance of cyclic AMP-dependent protein kinases from the gel profile. This method was employed to identify bands 2 and 3 as cyclic AMP-dependent protein kinases. The protein kinases in growth-arrested cells were compared with proliferating cells. We have observed a 3.5-fold increase in the activity of Type II protein kinase as the cells arrest growth in G1 phase of the cell cycle. This increase in Type II is correlated with the increase in cells blocked in G1 and a decrease in Type II activity appears to be an early event in permitting cells to leave G1 and resume growth.  相似文献   

18.
Differences in the cyclic AMP-dependent plasma membrane phosphorylation system of undifferentiated and differentiated L6 myogenic cells have been detected. Endogenous plasma membrane protein phosphorylation in undifferentiated L6 myoblasts was stimulated more than three fold by 5 x 10(-5) M cyclic AMP, whereas no statistically significant cyclic AMP-dependent phosphorylation of endogenous plasma membrane proteins was observed in differentiated L6 cells. In undifferentiated cells cyclic AMP promoted the phosphorylation of several proteins, the most prominent of which had a molecular weight of 110,000. In differentiated cells cyclic AMP did not selectively promote the phosphorylation of specific plasma membrane proteins. Both differentiated and undifferentiated L6 cells, however, contain a cyclic AMP-dependent protein kinase capable of catalyzing the phosphorylation of exogenous substrates, such as histone f2b. Therefore, the data show that differentiation in L6 cells is associated with a selective change in the activity of a plasma membrane cyclic AMP-dependent protein kinase which employs endogenous membrane proteins as substrate.  相似文献   

19.
Activation of the cyclic AMP-dependent protein kinase in intact lymphosarcoma cells can be promoted by epinephrine. The lymphosarcoma protein kinase is approximately 90% Isozyme I. Using the synthetic peptide PK-1 (LeuArgArgAlaSerLeuGly) as substrate for the kinase, the cyclic AMP-dependent protein kinase activity was 95% of the total protein phosphotransferase activity in the cell extract. In control cells the optimum extraction buffer for preventing enzyme subunit dissociation or reassociation contained buffer (2(N-morpholino)ethanesulfonic acid), EDTA, 2-mercaptoethanol, and charcoal. The absence of charcoal or the presence of 0.14 m KCl in the buffer promoted enzyme dissociation in the extract. The phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine had no effect. In extracts from epinephrine-treated cells or extracts to which purified catalytic subunit of the cyclic AMP-dependent protein kinase was added, recovery of the total protein kinase activity was 25% of that predicted in experiments with control cells. Recovery of enzyme activity increased to 80–95% of the predicted value when 0.14 m KCl was included in the extraction buffer. Methods involving a two-buffer extraction procedure are presented as the optimum protocol for determining in vivo activation of the cyclic AMP-dependent protein kinase, Isozyme I. Using these methods, epinephrine (1 μm) dissociated the cyclic AMP-dependent protein kinase essentially 100% in intact lymphosarcoma cells. The dissociation was apparently maintained for up to 60 min. Approximately 10–15% of the dissociated enzyme may be specifically associated with particulate cell fractions. Collectively the data emphasize the experimental difficulty inherent in determination of the extent of in vivo dissociation of the cyclic AMP-dependent protein kinase.  相似文献   

20.
1. The effects of thyroliberin were studied in cultured rat pituitary-tumour cells that synthesize and secrete prolactin (the GH4C1 cell strain). 2. Prolactin and cyclic AMP were measured by radioimmunological methods, and a cyclic AMP-dependent protein kinase was characterized by using histone as substrate. 3. Prolactin release was studied after 5-60min of treatment, and synthesis after 48h of treatment with thyroliberin. One-half maximum stimulation of release and synthesis were observed at 0.25 and at 4nM respectively. 4. Cyclic AMP was temporarily increased in cell suspensions after treatment with thyroliberin, and one-half maximum stimulation was observed at 25nM. 5. Dibutyryl cyclic AMP increased prolactin release and synthesis, one-half maximum effects being obtained at 20 micronM. 6. A cyclic AMP-dependent protein kinase, which was one-half maximally stimulated at 30 nM-cyclic AMP, was demonstrated. 7. An increase in the activity ratio (-cyclic AMP/+cyclic AMP) of the cyclic AMP-dependent protein kinase was observed after treatment with thyroliberin. Total protein kinase activity in the presence of cyclic AMP was unaltered. The time-course of enzyme activation was similar to that of cyclic AMP formation and corresponded to the time when prolactin release was first observed. 8. It is concluded that thyroliberin induces cyclic AMP formation, resulting in the activation of a cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号