首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to examine the relation between gene expression and the shape of human intervertebral disc cells cultured in vitro in three-dimensional (3D) scaffolds. Disc cells from 19 subjects were seeded into either a collagen sponge or collagen gel and cultured for 10 days. In situ hybridization was performed on serial sections of paraffin embedded specimens and assessed for expression of selected genes important for extracellular matrix formation: Types I and II collagen, aggrecan and chondroitin-6 sulfotransferase. Rounded cells grown in collagen gel showed expression of Types I and II collagen, aggrecan and chondroitin-6 sulfotransferase; expression of these genes was absent in spindle shaped cells. Cells in the collagen sponge that lay on the sponge margin were frequently spindle shaped; these cells expressed type I collagen, but not type II collagen, aggrecan or chondroitin-6 sulfotransferase. Results presented here provide novel data concerning disc cell gene expression with collagen 3D constructs. This information is useful for future tissue engineering studies that have the challenging goal of selectively modulating gene expression.  相似文献   

2.
The objective of the present study was to examine the relation between gene expression and the shape of human intervertebral disc cells cultured in vitro in three-dimensional (3D) scaffolds. Disc cells from 19 subjects were seeded into either a collagen sponge or collagen gel and cultured for 10 days. In situ hybridization was performed on serial sections of paraffin embedded specimens and assessed for expression of selected genes important for extracellular matrix formation: Types I and II collagen, aggrecan and chondroitin-6 sulfotransferase. Rounded cells grown in collagen gel showed expression of Types I and II collagen, aggrecan and chondroitin-6 sulfotransferase; expression of these genes was absent in spindle shaped cells. Cells in the collagen sponge that lay on the sponge margin were frequently spindle shaped; these cells expressed type I collagen, but not type II collagen, aggrecan or chondroitin-6 sulfotransferase. Results presented here provide novel data concerning disc cell gene expression with collagen 3D constructs. This information is useful for future tissue engineering studies that have the challenging goal of selectively modulating gene expression.  相似文献   

3.
The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell motility and invasion. The current studies evaluate the role of a cell surface chondroitin sulfate proteoglycan (CSPG) in the adhesion, motility, and invasive behavior of a highly metastatic mouse melanoma cell line (K1735 M4) on type I collagen matrices. By blocking mouse melanoma cell production of CSPG with p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside), a compound that uncouples chondroitin sulfate from CSPG core protein synthesis, we observed a corresponding decrease in melanoma cell motility on type I collagen and invasive behavior into type I collagen gels. Melanoma cell motility on type I collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG is not a primary cell adhesion receptor, but may play a role in melanoma cell motility and invasion at the level of cellular translocation. Furthermore, purified mouse melanoma cell surface CSPG was shown, by affinity chromatography and in solid phase binding assays, to bind to type I collagen and this interaction was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related CSPG and type I collagen in the ECM may play an important role in mouse melanoma cell motility and invasion, and that the chondroitin sulfate portion of the proteoglycan seems to be a critical component in mediating this effect.  相似文献   

4.
Rabbit articular chondrocytes were seeded onto three-dimensional polyglycolic acid (PGA) scaffolds and placed into a closed bioreactor system. After 4 weeks of growth, meshes were examined for cartilage formation. Gross examination revealed solid, glistening material that had the appearance of cartilaginous tissue. Histologic examination revealed cell growth and deposition of extracellular matrix throughout the mesh with a less dense central core. Alcian blue and Safranin 0 staining showed deposition of glycosaminoglycans (GAGs). Immunostaining showed positive reactivity for type II collagen and chondroitin sulfate and no reactivity for type I collagen. Biochemical analysis showed collagen and GAG values to be 15% and 25% dry weight, respectively. Our results indicate that this type of system compares well with those previously described and should be useful for producing cartilage for evaluation in a clinical setting. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
We have investigated the influence of culture substrata upon glycosaminoglycans produced in primary cultures of mouse mammary epithelial cells isolated from the glands of late pregnant mice. Three substrata have been used for experiments: tissue culture plastic, collagen (type I) gels attached to culture dishes, and collagen (type I) gels that have been floated in the culture medium after cell attachment. These latter gels contract significantly. Cells cultured on all three substrata produce hyaluronic acid, heparan sulfate, chondroitin sulfates and dermatan sulfate but the relative quantities accumulated and their distribution among cellular and extracellular compartments differ according to the nature of the culture substratum. Notably most of the glycosaminoglycans accumulated by cells on plastic are secreted into the culture medium, while cells on floating gels incorporate almost all their glycosaminoglycans into an extracellular matrix fraction. Cells on attached collagen gels secrete approx. 30% of their glycosaminoglycans and assemble most of the remainder into an extracellular matrix. Hyaluronic acid is produced in significant quantities by cells on plastic and attached gels but in relatively reduced quantity by cells on floating gels. In contrast, iduronyl-rich dermatan sulfate is accumulated by cells on floating gels, where it is primarily associated with the extracellular matrix fraction, but is proportionally reduced in cells on plastic and attached gels. The results are discussed in terms of polarized assembly of a morphologically distinct basal lamina, a process that occurs primarily when cells are on floating gels. In addition, as these cultures secrete certain milk proteins only when cultured on floating gels, we discuss the possibility that cell synthesized glycosaminoglycans and proteoglycans may play a role in the maintenance of a differentiated phenotype.  相似文献   

6.
Real-time interactions of collagen I, fibronectin, laminin, hyaluronic acid and chondroitin sulfate with immobilized Escherichia coli O157:H7 cells were studied with a surface plasmon resonance biosensor. Results showed that collagen I and laminin bound to the E.coli surface but fibronectin had very low binding while hyaluronic acid and chondroitin sulfate had no detectable interaction. Calcium ion inhibited laminin binding but enhanced collagen I binding. This research provides a model system to study the interactions of bacterial cells with extracellular matrix components. © Rapid Science Ltd. 1998  相似文献   

7.
In vitro propagation of osteoblasts in three-dimensional culture has been explored as a means of cell line expansion and tissue engineering purposes. Studies investigating optimal culture conditions are being conducted to produce bone-like material. This study demonstrates the use of collagen microcarrier beads as a substrate for three-dimensional cell culture. We have earlier reported that microcarriers consisting of cross-linked type I collagen support chondrocyte proliferation and synthesis of extracellular matrix. In this study, we investigated the use of collagen microcarriers to propagate human trabecular bone-derived osteoblasts. Aggregation of cell-seeded microcarriers and production of extracellular matrix-like material were observed after 5 d in culture. Expression of extracellular matrix proteins osteocalcin, osteopontin, and type I collagen was confirmed by messenger ribonucleic acid analysis, radioimmunoassay, and Western blot analysis. The efficient recovery of viable cells was achieved by collagenase digestion of the cell-seeded microcarriers. The collagen microcarrier spinner culture system provides an efficient method to amplify large numbers of healthy functional cells that can be subsequently used for further in vitro or transplantation studies.  相似文献   

8.
Abstract. Adult murine bone marrow cells, cultured under conditions for long-term haemopoietic marrow cultures, produce bone matrix proteins and mineralized tissue in vitro , but only after the adherent stromal cells were loaded on a 3-dimensional collagen sponge. Provided more than 8 × 106 cells are loaded, mineralization as measured by 85Sr uptake from the culture medium, occurred in this 3-dimensional configuration (3-D) within 6 days. In contrast if undisrupted marrow fragments (containing more than 107 cells) are placed directly on a collagen sponge, then it requires more than 10 days before significant mineralization can similarly be detected. The 2-dimensional (2-D) long-term marrow culture system allows prior expansion of the stromal cells and some differentiation in an osteogenic direction within the adherent stromal layer. This is suggested by the presence of type I collagen and alkaline phos-phatase positive cells. However, synthesis of osteonectin and a bone specific protein, osteocalcin, as well as calcification are only observed in 3-D cultures. Electron microscopy demonstrated hydroxyapatite mineral on collagen fibres, osteoblast-like cells, fibroblasts, cells which accumulated lipids, and macrophages which were retained on the collagen matrices. Irradiation of confluent long-term bone marrow cultures, prior to their loading on the collagen sponge showed that haemopoietic stem cells are not necessary for the mineralization.  相似文献   

9.
H Munakata  K Takagaki  M Majima  M Endo 《Glycobiology》1999,9(10):1023-1027
The interactions of glycosaminoglycans with collagens and other glycoproteins in extracellular matrix play important roles in cell adhesion and extracellular matrix assembly. In order to clarify the chemical bases for these interactions, glycosaminoglycan solutions were injected onto sensor surfaces on which collagens, fibronectin, laminin, and vitronectin were immobilized. Heparin bound to type V collagen, type IX collagen, fibronectin, laminin, and vitronectin; and chondroitin sulfate E bound to type II, type V, and type VII collagen. Heparin showed a higher affinity for type IX collagen than for type V collagen. On the other hand, chondroitin sulfate E showed the highest affinity for type V collagen. The binding of chondroitin sulfate E to type V collagen showed higher affinity than that of heparin to type V collagen. These data suggest that a novel characteristic sequence included in chondroitin sulfate E is involved in binding to type V collagen.  相似文献   

10.
We have studied the combined effects of platelet-derived soluble factors and three types of macromolecular substrata on the proliferation and migration of smooth muscle cells in vitro. Bovine aortic smooth muscle cells were plated onto three-dimensional gels of type I collagen or onto cell-free extracellular matrices deposited on such gels by either bovine aortic endothelial cells or smooth muscle cells. The cells were cultured in the presence of whole-blood serum (WBS) or platelet-poor plasma (PPP). Smooth muscle cell proliferation on type I collagen gels was dependent on the presence of platelet-derived factors, i.e. the cells proliferated in the presence of WBS but not in PPP. In contrast, cell proliferation on the extracellular matrices occurred at the same rate in PPP and WBS. Smooth muscle cells plated onto collagen gels rapidly migrated down into the gel matrix; the percentage of cells migrating was inversely proportional to cell density. The presence of extracellular matrices did not alter the rate of cell migration into the underlying gel matrix. Irrespective of the substratum used, smooth muscle cell migration was independent of platelet-derived or plasma factors and occurred in the absence of proliferation. These results indicate that possible chemotactic, chemokinetic, and/or mitogenic factors produced by the vascular cells and deposited within the extracellular matrix may play an important role in modulating smooth muscle cell behaviour in the vascular wall.  相似文献   

11.
Two different types of macrophage colony-stimulating factors (M-CSF) were found, one with an apparent molecular mass of 85 kDa and the other greater than 200 kDa. The high molecular mass M-CSF was identified as a proteoglycan carrying chondroitin sulfate glycosaminoglycan and was designated as the proteoglycan form of M-CSF (PG-M-CSF). In this study, we compared the biological activity of the 85-kDa M-CSF and PG-M-CSF and examined the binding properties of these two M-CSF to certain extracellular matrix proteins, i.e. types I-V collagen and fibronectin, using a modified enzyme-linked immunosorbent assay. PG-M-CSF was capable of supporting the formation of murine macrophage colonies, and pretreatment of PG-M-CSF with chondroitinase AC, which degrades chondroitin sulfate, did not alter its colony-stimulating activity. The specific activity of PG-M-CSF was similar to that of the 85-kDa M-CSF. The 85-kDa M-CSF had no apparent affinity for the extracellular matrix proteins examined, whereas PG-M-CSF had an appreciable binding capacity to type V collagen, but did not bind to types I, II, III, and IV collagen or to fibronectin. Pretreatment of PG-M-CSF with chondroitinase AC completely abolished the binding of the species to type V collagen. Addition of exogenous chondroitin sulfate inhibited the binding of PG-M-CSF to type V collagen in a dose-dependent manner. These data indicated that the interaction between PG-M-CSF and type V collagen was mediated by the chondroitin sulfate chain of PG-M-CSF. PG-M-CSF bound to type V collagen could stimulate the proliferation of bone marrow macrophages, indicating that the matrix protein-bound PG-M-CSF retained its biological activity. This interaction between PG-M-CSF and type V collagen implies that the role of PG-M-CSF may be distinct from that of 85-kDa M-CSF.  相似文献   

12.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

13.
Previous studies showed that cultures of chick limb bud mesenchymal cells plated at high density, to maximize chondrogenic expression, had a much reduced extracellular matrix around chondrocytes when exposed to 4-methyl-, umbelliferyl-β-d-xyloside. The majority of newly synthesized chondroitin sulfate chains were found in the culture medium presumably bound to the xyloside as opposed to their normal deposition on the core protein of proteoglycan. The question remained open as to whether the development of an abnormal matrix affected the synthesis of extracellular deposition of other cartilage-specific macromolecules. We have analyzed, both morphologically and biochemically, the synthesis and deposition of Type I and Type II collagen by β-d-xyloside-treated cultures of limb mesenchymal cells. While the rate of collagen synthesis per plate and its extracellular accumulation after 8 days in culture were reduced to some extent, the ratios of Type II to Type I collagen and the morphological distribution of these macromolecules were not affected by exposure to β-d-xyloside. We conclude that the expression of the cartilage-specific Type II collagen during chondrogenic differentiation is, although reduced, qualitatively not dependent on the amount of extracellular chondroitin sulfate chains attached to matrix-associated proteoglycan core protein. However, prolonged exposure of limb bud cells to xylosides leads to the formation of a chondroitin sulfate- and collagen-deficient matrix which, in turn, reduces the capacity of limb bud cells to synthesize Types I and II collagen.  相似文献   

14.
Human autosomal dominant polycystic kidney disease (ADPKD) epithelia were grown in primary monolayer cultures and their properties compared with intact kidney epithelial cultures derived from individually microdissected normal human kidney proximal convoluted tubules (PCT), proximal straight tubules (PST), and cortical collecting tubules (CCT). In vivo, ADPKD cyst epithelia exhibited a thickened basement membrane, and immunofluorescence demonstrated the presence of laminin, fibronectin, type IV collagen, and heparan sulfate proteoglycan in basement membranes and type I collagen in the interstitium. ADPKD epithelia grown in culture synthesized and secreted basally a unique, extracellular matrix that took the form of proteinaceous spheroids when the cells were grown on dried, type I collagen. Incorporation of H2[S35O4] into basement membrane extracts was increased more than ten-fold in ADPKD epithelia by comparison to normal PST and CCT. In addition to incorporation into the normal tubular basement membrane 220 kD band, radioactivity was also seen at 175 kD and 150 kD in ADPKD extracts. Growth in culture of cyst-lining ADPKD epithelia was more rapid than normal tubules, and was abnormal since there was no absolute requirement for added extracellular matrix. However, when ADPKD epithelia were grown on different, exogenous matrix protein components, a profound influence on both structure and epithelial cell proliferation was seen. Growth on a complete basement membrane three-dimensional gel derived from the Engelbreth-Holm-Swarm (EHS) sarcoma led to a reduction in the numbers of spheroids and increase in amorphous filaments. Incorporation of [3H]-thymidine into ADPKD epithelia was greater than into normal PCT, PST, and CCT and was also greatly modified by the type of extracellular matrix components provided. In studies using single matrix components, the strongest proliferative response was seen when ADPKD epithelia were plated on type I collagen greater than type IV collagen greater than fibronectin greater than laminin. These findings suggest that the excessive growth of cyst-lining epithelia may be, at least in part, a result of abnormal basement membrane and extracellular matrix production by ADPKD cells.  相似文献   

15.
The small leucine-rich proteoglycan decorin has been demonstrated to be a key regulator of collagen fibrillogenesis; decorin deficiencies lead to irregularly shaped collagen fibrils and weakened material behavior in postnatal murine connective tissues. In an in vitro investigation of the contributions of decorin to tissue organization and material behavior, model tissues were engineered by seeding embryonic fibroblasts, harvested from 12.5-13.5 days gestational aged decorin null (Dcn(-/-)) or wild-type mice, within type I collagen gels. The resulting three-dimensional collagen matrices were cultured for 4 weeks under static tension. The collagen matrices seeded with Dcn(-/-) cells exhibited greater contraction, cell density, ultimate tensile strength, and elastic modulus than those seeded with wild-type cells. Ultrastructurally, the matrices seeded with Dcn(-/-) cells contained a greater density of collagen. The decorin-null tissues contained more biglycan than control tissues, suggesting that this related proteoglycan compensated for the absence of decorin. The effect of transforming growth factor-beta (TGF-beta), which is normally sequestered by decorin, was also investigated in this study. The addition of TGF-beta1 to the matrices seeded with wild-type cells improved their contraction and mechanical strength, whereas blocking TGF-beta1 in the Dcn(-/-) cell-seeded matrices significantly reduced the collagen gel contraction. These results indicate that the inhibitory interaction between decorin and TGF-beta1 significantly influenced the matrix organization and material behavior of these in vitro model tissues.  相似文献   

16.
INTRODUCTION: We studied the migration pattern, morphology and viability of cells suspended in five different fibrin glues. Besides this, the behaviour of chondrocytes seeded on porous matrices comprising different collagen types sealed with fibrin glue was investigated. MATERIAL AND METHODS: In an experiment A, cell suspension (0.5x10(6) cells) was incubated with different fibrin glues. Experiment B was set up to evaluate chondrocytes migration either through a collagen I/III (Chondro-Gide, Geistlich Biomaterials, Switzerland) or collagen II matrix sealed with different fibrin glues in a perfusion chamber system. Analysis were performed by lightmicroscopy (Mayer's hematoxylin-eosin; Masson-Goldner; TUNEL test) and by transmission and scanning electron microscopy. All fibrin glues were measured for TGF-beta 1 and 2 with a specific ELISA. RESULTS: After incubation of cell suspension in autologous fibrin glue, the morphology of cells is chondrocyte-like. Spindly, process-bearing cells were seen in commercial fibrin glue. Cells suspended in commercial fibrin glue revealed a significant higher percentage of TUNEL positive cells compared to fibrin tissue adhesives mixed with autologous serum (p=0.006). The TGF-beta 1 and 2 concentration was significantly higher in partial autologous fibrin sealant (PAF) compared to their commercial counterparts (p=0.001). Cells seeded on the collagen I/III matrix retained their chondrocytic morphology, while in the type II collagen matrix the chondrocytes displayed a fibroblastic phenotype. The ratio of TUNEL positive cells for the collagen I/III matrix was significantly surpassed by the values, when a collagen II matrix was used (p=0.008). No ingrowth of cells was seen in any of the experimental conditions. CONCLUSION: Partial autologous fibrin glue and collagen I/III matrices are favourable in respect to migration pattern, morphology and viability, but definitive conclusions can only be drawn after in vivo studies. This will be addressed in future animal studies.  相似文献   

17.
Hepatocyte behavior within three-dimensional porous alginate scaffolds   总被引:14,自引:0,他引:14  
A potential approach to facilitate the performance of implanted hepatocytes is to enable their aggregation and re-expression of their differentiated function prior to implantation. Here we examined the behavior of freshly isolated rat adult hepatocytes seeded within a novel three-dimensional (3-D) scaffold based on alginate. The attractive features of this scaffold include a highly porous structure (sponge-like) with interconnecting pores, and pore sizes with diameters of 100-150 microm. Due to their hydrophilic nature, seeding hepatocytes onto the alginate sponges was efficient. DNA measurements showed that the total cell number within the sponges did not change over 2 weeks, indicating that hepatocytes do not proliferate under these culture conditions. Nearly all seeded cells maintained viability, according to the MTT assay. Within 24 h post-seeding, small clusters of viable cells, were seen scattered within the sponge. More than 90% of the seeded cells participated in the aggregation; the high efficiency is attributed to the non-adherent nature of alginate. The spheroids had smooth boundaries and by day 4 in culture reached an average diameter of 100 microm, which is at the same magnitude of the sponge pore size. The cells appeared to synthesize fibronectin which was deposited on the spheroids. No laminin or collagen type IV were detected in the deposit. The 3-D arrangement of hepatocytes within the alginate sponges promoted their functional expression; within a week the cells secreted the maximal albumin secretion rate of 60 microg albumin/10(6) cells/day. Urea secretion rate did not depend on cell aggregation and was similar to that obtained when hepatocytes were cultured on collagen type I coated dishes (100 microg/10(6) cells/day). Our studies show that alginate sponges can provide a conducive environment to facilitate the performance of cultured hepatocytes by enhancing their aggregation.  相似文献   

18.
Neural crest cells migrate extensively through a complex extracellular matrix (ECM) to sites of terminal differentiation. To determine what role the various components of the ECM may play in crest morphogenesis, quail (Coturnix coturnix japonica) neural crest cells have been cultured in three-dimensional hydrated collagen lattices containing various combinations of macromolecules known to be present in the crest migratory pathways. Neural crest cells migrate readily in native collagen gels whereas the cells are unable to use denatured collagen as a migratory substratum. The speed of movement decreases linearly as the concentration of collagen in the gel increases. Speed of movement of crest cells is stimulated in gels containing 10% fetal calf serum and chick embryo extract, 33 micrograms/ml fibronectin cell-binding fragments, 3 mg/ml chondroitin sulfate, or 3 mg/ml chondroitin sulfate proteoglycan when compared to rates of movement through collagen lattices alone. Low concentrations of hyaluronate (250-500 micrograms/ml) in a 750 micrograms/ml collagen gel do not alter rates of movement over collagen alone, but higher concentrations (4 mg/ml) greatly inhibit migration. Conversely, hyaluronate (250 micrograms/ml) significantly increases speed of movement if the crest cells are cultured in high concentration collagen gels (2.5 mg/ml), suggesting that hyaluronate is expanding spaces and consequently enhancing migration. The morphology and mode of movement of neural crest cells vary with the matrix in which they are grown and can be correlated with their speed of movement. Light and scanning electron microscopy reveal rounded, blebbing cells in matrices associated with slower translocation, whereas rounded cells with branching filopodia or lamellipodia are associated with rapid translocation. Bipolar cells with long processes are observed in cultures of rapidly moving cells that appear to be adhering strongly, as well as in cultures of cells that are stationary for long periods. These data, considered with the known distribution of macromolecules in the early embryo, suggest the following: (1) Both collagen and fibronectin can act as preferred substrata for migration. (2) Chondroitin sulfate and chondroitin sulfate proteoglycan increase speed of movement, but probably do so by decreasing adhesiveness and thereby producing more frequent detachment. In the embryo, crest cells would most likely avoid regions containing high concentrations of chondroitin sulfate. (3) Hyaluronate cannot act as a substratum for migration, but in low concentrations it can open spaces in the matrix and consequently may stimulate movement. The complex interactions of combined matr  相似文献   

19.
20.
The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号