首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
K Jung  Q Wang  Y Kim  K Scheuer  Z Zhang  Q Shen  KO Chang  LJ Saif 《PloS one》2012,7(7):e41619
The lack of an animal model for human norovirus (HuNoV) has hindered the development of therapeutic strategies. This study demonstrated that a commonly used cholesterol-lowering statin medication, simvastatin, which increases HuNoV replication in an in vitro replicon system, also enhances HuNoV infectivity in the gnotobiotic (Gn) pig model. In contrast, oral treatment with interferon (IFN)-α reduces HuNoV infectivity. Young piglets, all with A or H1 histo-blood group antigens on enterocytes, were treated orally with 8 mg/kg/day of simvastatin; 5 days later, the pigs were inoculated orally with a GII.4 HuNoV (HS194/2009/US strain) and then treated with simvastatin for 5 more days. Simvastatin induced significantly earlier onset and longer duration of HuNoV fecal shedding in treated pigs, frequently with higher fecal viral titers. Simvastatin impaired poly (I:C)-induced IFN-α expression in macrophages or dendritic cells, possibly due to lowered toll-like receptor (TLR) 3 expression; however, the mechanisms were not related to interferon regulatory factor 3 or nuclear factor kappa B signaling pathway. Thus, the enhanced, earlier infectivity of HuNoV in simvastatin-treated pigs coincided with the inhibitory effect of simvastatin on innate immunity. In contrast to the increased HuNoV shedding that simvastatin induced, viral shedding during the treatment period was reduced or curtailed in the HuNoV-inoculated pigs pre-treated/treated with human IFN-α. Our findings are the first to indicate that IFN-α has potential as antiviral therapy against HuNoV. Based on these intriguing and novel findings using the Gn pig model, we confirmed that HuNoV infectivity is altered by treatment with simvastatin or IFN-α. Collectively, these findings indicate that Gn pigs are a useful model to test immunomodulators or efficacy of antivirals against HuNoV.  相似文献   

2.
3.
Histo-blood group antigen (HBGA) phenotypes have been associated with susceptibility to human noroviruses (HuNoVs). Our aims were: (i) to determine the patterns of A/H HBGA expression in buccal and intestinal tissues of gnotobiotic (Gn) pigs; (ii) to determine if virus-like particles (VLPs) of HuNoV genogroup I (GI) and GII bind to A- or H-type tissues; (iii) to compare A/H expression and VLP binding patterns and confirm their binding specificities by blocking assays; (iv) to develop a hemagglutination inhibition test using buccal cells from live pigs to determine the Gn pig's A/H phenotype and to match viral strains with previously determined HuNoV VLP binding specificities; and (v) to determine the A/H phenotypes and compare these data to the infection outcomes of a previous study of 65 Gn pigs inoculated with HuNoV GII/4 strain HS66 and expressing A and/or H or neither antigen on their buccal and intestinal tissues (S. Cheetham, M. Souza, T. Meulia, S. Grimes, M. G. Han, and L. J. Saif, J. Virol. 80:10372-10381, 2006). We found that the HuNoV GI/GII VLPs of different clusters bound to tissues from four pigs tested (two A+ and two H+). The GI/1 and GII/4 VLPs bound extensively to duodenal and buccal tissues from either A+ or H+ pigs, but surprisingly, GII/1 and GII/3 VLPs bound minimally to the duodenum of an A+ pig. The VLP binding was partially inhibited by A-, H1-, or H2-specific monoclonal antibodies, but was completely blocked by porcine mucin. Comparing the A/H phenotypes of 65 HS66-inoculated Gn pigs from our previous study, we found that significantly more A+ and H(+) pigs (51%) than non-A+ and non-H+ pigs (12.5%) shed virus. From the 22 convalescent pigs, significantly more A+ or H+ pigs (66%) than non-A+ or H+ pigs (25%) seroconverted.  相似文献   

4.
A human norovirus genogroup II.4 strain HS66 (HuNoV-HS66) infects and causes mild diarrhea in gnotobiotic (Gn) pigs (S. Cheetham, M. Souza, T. Meulia, S. Grimes, M. G. Han, and L. J. Saif, J. Virol. 80:10372-10381, 2006). In this study we evaluated systemic and intestinal humoral and cellular immune responses to HuNoV-HS66 in orally inoculated pigs. Antibodies and type I interferon (IFN-I or IFN-alpha), proinflammatory interleukin-6 (IL-6), Th1 (IL-12 and IFN-gamma), Th2 (IL-4), and Th2/regulatory T ([T(reg)] IL-10) cytokine profiles in serum and intestinal contents (IC) of the HuNoV-HS66-inoculated pigs and controls were assessed by enzyme-linked immunosorbent assay at selected postinoculation days (0 to 28). Using an enzyme-linked immunospot assay, we evaluated immunoglobulin M (IgM), IgA, and IgG antibody-secreting cells (ASC) and cytokine-secreting cells (CSC) in intestine, spleen, and blood. In the HuNoV-inoculated pigs, antibody titers in serum and IC were generally low, and 65% seroconverted. Pigs with higher diarrhea scores were more likely to seroconvert and developed higher intestinal IgA and IgG antibody titers. The numbers of IgA and IgG ASC were higher systemically than in the gut. In serum, HuNoV induced persistently higher Th1 (low transient IFN-gamma and high IL-12) than the other cytokines, but also low Th2 (IL-4) and Th2/T(reg) (IL-10) levels; low, transient proinflammatory (IL-6) cytokines; and, notably, a delayed IFN-alpha response. In contrast, intestinal innate (IFN-alpha early and late) and Th1 (IL-12 late) cytokines were significantly elevated postinfection. HuNoV-HS66 also elicited higher numbers of Th1 (IL-12 and IFN-gamma) CSC than Th2 (IL-4) and proinflammatory (IL-6) CSC, with the latter responses low in blood and intestine, reflecting low intestinal inflammation in the absence of gut lesions. These data provide insights into the kinetics of cytokine secretion in serum and IC of HuNoV-inoculated Gn pigs and new information on intestinal humoral and cellular immune responses to HuNoV that are difficult to assess in human volunteers.  相似文献   

5.
We previously characterized the pathogenesis of two host-specific bovine enteric caliciviruses (BEC), the GIII.2 norovirus (NoV) strain CV186-OH and the phylogenetically unassigned NB strain, in gnotobiotic (Gn) calves. In this study we evaluated the Gn calf as an alternative animal model to study the pathogenesis and host immune responses to the human norovirus (HuNoV) strain GII.4-HS66. The HuNoV HS66 strain caused diarrhea (five/five calves) and intestinal lesions (one/two calves tested) in the proximal small intestine (duodenum and jejunum) of Gn calves, with lesions similar to, but less severe than, those described for the Newbury agent 2 (NA-2) and NB BEC. Viral capsid antigen was also detected in the jejunum of the proximal small intestine of one of two calves tested by immunohistochemistry. All inoculated calves shed virus in feces (five/five calves), and one/five had viremia. Antibodies and cytokine (proinflammatory, tumor necrosis factor alpha [TNF-α]; Th1, interleukin-12 [IL-12] and gamma interferon [IFN-γ]; Th2, IL-4; Th2/T-regulatory, IL-10) profiles were determined in serum, feces, and intestinal contents (IC) of the HuNoV-HS66-inoculated calves (n = 5) and controls (n = 4) by enzyme-linked immunosorbent assay in the acute (postinoculation day 3 [PID 3]) and convalescent (PID 28) stages of infection. The HuNoV-HS66-specific antibody and cytokine-secreting cells (CSCs) were quantitated by ELISPOT in mononuclear cells of local and systemic tissues at PID 28. Sixty-seven percent of the HuNoV-HS66-inoculated calves seroconverted, and 100% coproconverted with immunoglobulin A (IgA) and/or IgG antibodies to HuNoV-HS66, at low titers. The highest numbers of antibody-secreting cells (ASC), both IgA and IgG, were detected locally in intestine, but systemic IgA and IgG ASC responses also occurred in the HuNoV-HS66-inoculated calves. In serum, HuNoV-HS66 induced higher peaks of TNF-α and IFN-γ at PIDs 2, 7, and 10; of IL-4 and IL-10 at PID 4; and of IL-12 at PIDs 7 and 10, compared to controls. In feces, cytokines increased earlier (PID 1) than in serum and TNF-α and IL-10 were elevated acutely in the IC of the HS66-inoculated calves. Compared to controls, at PID 28 higher numbers of IFN-γ and TNF-α CSCs were detected in mesenteric lymph nodes (MLN) or spleen and Th2 (IL-4) CSCs were elevated in intestine; IL-10 CSCs were highest in spleen. Our study provides new data confirming HuNoV-HS66 replication and enteropathogenicity in Gn calves and reveals important and comprehensive aspects of the host's local (intestine and MLN) and systemic (spleen and blood) immune responses to HuNoV-HS66.  相似文献   

6.
7.
This study aims to establish a human gut microbiota (HGM) transplanted gnotobiotic (Gn) pig model of human rotavirus (HRV) infection and diarrhea, and to verify the dose-effects of probiotics on HRV vaccine-induced immune responses. Our previous studies using the Gn pig model found that probiotics dose-dependently regulated both T cell and B cell immune responses induced by rotavirus vaccines. We generated the HGM transplanted neonatal Gn pigs through daily feeding of neonatal human fecal suspension to germ-free pigs for 3 days starting at 12 hours after birth. We found that attenuated HRV (AttHRV) vaccination conferred similar overall protection against rotavirus diarrhea and virus shedding in Gn pigs and HGM transplanted Gn pigs. HGM promoted the development of the neonatal immune system, as evidenced by the significantly enhanced IFN-γ producing T cell responses and reduction of regulatory T cells and their cytokine production in the AttHRV-vaccinated pigs. The higher dose Lactobacillus rhamnosus GG (LGG) feeding (14 doses, up to 109 colony-forming-unit [CFU]/dose) effectively increased the LGG counts in the HGM Gn pig intestinal contents and significantly enhanced HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine. Lower dose LGG (9 doses, up to 106 CFU/dose) was ineffective. Neither doses of LGG significantly improved the protection rate, HRV-specific IgA and IgG antibody titers in serum, or IgA antibody titers in intestinal contents compared to the AttHRV vaccine alone, suggesting that an even higher dose of LGG is needed to overcome the influence of the microbiota to achieve the immunostimulatory effect in the HGM pigs. This study demonstrated that HGM Gn pig is an applicable animal model for studying immune responses to rotavirus vaccines and can be used for studying interventions (i.e., probiotics and prebiotics) that may enhance the immunogenicity and protective efficacy of vaccines through improving the gut microbiota.  相似文献   

8.
This study investigated the occurrence of human Norovirus (HuNoV) by genotype in 1,486 groundwater samples collected from 843 groundwater wells suspected of contamination during 2007–2016, in South Korea. We identified and genotyped 186 HuNoV sequences in 178 HuNoV-positive samples using the RIVM-NoroNet norovirus genotyping tool (NGT) and phylogenetic tree analysis based on RIVM-NoroNet reference sequences. HuNoV GII was more prevalent than GI. The major genotypes detected were HuNoV GII.4 (43.0%), GII.22 (15.6%), GI.5 (10.2%), and GI.1 (8.6%); several genotypes accounted for < 5.0% of all HuNoVs, including GII.17, GI.6, GI.4, GII.6, GI.8, GII.3, GII.13, GI.3, GI.7, GI.2, GI.9, GII.1, GII.8, and GII.10. The prevalence of HuNoVs and number of genotypes detected has drastically decreased over the last decade. HuNoV GII.17, the emerging genotype worldwide including Europe and Asia, appeared in Korean groundwater from 2010, dominated in 2013–2014, and continued to be observed. HuNoV GII.4, the major type occurred last decade from Korean groundwater except 2013–2014, continued to be detected and prevalent similar to HuNoV GII.17 in 2016.  相似文献   

9.
10.
11.
We investigated the immunogenicity of recombinant double-layered rotavirus-like particle (2/6-VLPs) vaccines derived from simian SA11 or human (VP6) Wa and bovine RF (VP2) rotavirus strains. The 2/6-VLPs were administered to gnotobiotic pigs intranasally (i.n.) with a mutant Escherichia coli heat-labile toxin, LT-R192G (mLT), as mucosal adjuvant. Pigs were challenged with virulent Wa (P1A[8],G1) human rotavirus at postinoculation day (PID) 21 (two-dose VLP regimen) or 28 (three-dose VLP regimen). In vivo antigen-activated antibody-secreting cells (ASC) (effector B cells) and in vitro antigen-reactivated ASC (derived from memory B cells) from intestinal and systemic lymphoid tissues (duodenum, ileum, mesenteric lymph nodes [MLN], spleen, peripheral blood lymphocytes [PBL], and bone marrow lymphocytes) collected at selected times were quantitated by enzyme-linked immunospot assays. Rotavirus-specific immunoglobulin M (IgM), IgA, and IgG ASC and memory B-cell responses were detected by PID 21 or 28 in intestinal and systemic lymphoid tissues after i.n. inoculation with two or three doses of 2/6-VLPs with or without mLT. Greater mean numbers of virus-specific ASC and memory B cells in all tissues prechallenge were induced in pigs inoculated with two doses of SA11 2/6-VLPs plus mLT compared to SA11 2/6-VLPs without mLT. After challenge, anamnestic IgA and IgG ASC and memory B-cell responses were detected in intestinal lymphoid tissues of all VLP-inoculated groups, but serum virus-neutralizing antibody titers were not significantly enhanced compared to the challenged controls. Pigs inoculated with Wa-RF 2/6-VLPs (with or without mLT) developed higher anamnestic IgA and IgG ASC responses in ileum after challenge compared to pigs inoculated with SA11 2/6-VLPs (with or without mLT). Three doses of SA 11 2/6-VLP plus mLT induced the highest mean numbers of IgG memory B cells in MLN, spleen, and PBL among all groups postchallenge. However, no significant protection against diarrhea or virus shedding was evident in any of the 2/6-VLP (with or without mLT)-inoculated pigs after challenge with virulent Wa human rotavirus. These results indicate that 2/6-VLP vaccines are immunogenic in gnotobiotic pigs when inoculated i.n. and that the adjuvant mLT enhanced their immunogenicity. However, i.n. inoculation of gnotobiotic pigs with 2/6-VLPs did not confer protection against human rotavirus challenge.  相似文献   

12.
Human noroviruses (HuNoV) are the leading cause of acute viral gastroenteritis and an important cause of foodborne disease. Despite their public health significance, routine detection of HuNoV in community settings, or food and environmental samples, is limited, and there is a need to develop alternative HuNoV diagnostic reagents to complement existing ones. The purpose of this study was to select and characterize single-stranded (ss)DNA aptamers with binding affinity to HuNoV. The utility of these aptamers was demonstrated in their use for capture and detection of HuNoV in outbreak-derived fecal samples and a representative food matrix. SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used to isolate ssDNA aptamer sequences with broad reactivity to the prototype GII.2 HuNoV strain, Snow Mountain Virus (SMV). Four aptamer candidates (designated 19, 21, 25 and 26) were identified and screened for binding affinity to 14 different virus-like particles (VLPs) corresponding to various GI and GII HuNoV strains using an Enzyme-Linked Aptamer Sorbant Assay (ELASA). Collectively, aptamers 21 and 25 showed affinity to 13 of the 14 VLPs tested, with strongest binding to GII.2 (SMV) and GII.4 VLPs. Aptamer 25 was chosen for further study. Its binding affinity to SMV-VLPs was equivalent to that of a commercial antibody within a range of 1 to 5 µg/ml. Aptamer 25 also showed binding to representative HuNoV strains present in stool specimens obtained from naturally infected individuals. Lastly, an aptamer magnetic capture (AMC) method using aptamer 25 coupled with RT-qPCR was developed for recovery and detection of HuNoV in artificially contaminated lettuce. The capture efficiency of the AMC was 2.5–36% with an assay detection limit of 10 RNA copies per lettuce sample. These ssDNA aptamer candidates show promise as broadly reactive reagents for use in HuNoV capture and detection assays in various sample types.  相似文献   

13.
14.
15.
ABSTRACT: BACKGROUND: Noroviruses (NoVs) are members of the family Caliciviridae and are emerging enteric pathogens of humans and animals. Some porcine NoVs are genetically similar to human strains and are classified into GII, like most epidemic human NoVs. So far, PoNoV have been exclusively detected in fecal samples of adult pig without clinical signs. METHODS: We collected 12 fecal samples from piglets with diarrhea and no accurate diagnosis of etiology from three commercial pig farms in Shanghai suburb. We tested for PoNoV, porcine circovirus type 2, porcine rotavirus, porcine transmissible gastroenteritis virus, porcine sapovirus, and porcine epidemic diarrhea virus using RT-PCR method. The full-genome sequence of the PoNoV was then determined and analyzed. Experimental infection of miniature pigs with fecal suspensions was performed to make sure if this strain can cause gastroenteritis in piglets. RESULTS: Result showed that 2 of the 12 evaluated fecal samples were positive for PoNoVs, one of which was positive for PoNoV alone, and the other was coinfected with porcine circovirus and PoNoV. Phylogenetic and recombination analysis showed that the PoNoV positive alone strain was a recombinant new genotype strain. Experimental infection of miniature pigs with fecal suspensions confirmed that this strain can cause gastroenteritis in piglets. CONCLUSION: This is the first report that recombinant new genotype PoNoV exised in pig herd of China, which cause diarrhea in pigs in nature condition. This find raised questions about the putative epidemiologic role of PoNoV.  相似文献   

16.
The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had significantly decreased MNC proliferation, suggesting that probiotics control excessive lymphoproliferative reactions upon VirHRV challenge. We conclude that in the neonatal Gn pig disease model, selected probiotics contribute to immunomaturation, regulate immune homeostasis and modulate vaccine and virulent HRV effects, thereby moderating HRV diarrhea.  相似文献   

17.
18.
The influence of Toxoplasma gondii on semen variables and sperm morphology of sheep was evaluated in eight reproductive males distributed into three experimental groups: GI, three sheep inoculated with 2.0x10(5) of P strain oocytes; GII, three sheep infected with 1.0x10(6) of RH strain tachyzoites and; GIII two control sheep. Clinical (rectal temperature, cardiac and respiratory frequencies), parasite and serology exams (IIF) were realized. Sperm variables (volume, motility, vigor and concentration) and semen morphology for each sheep were also evaluated. Thus, semen and blood collections were assessed on post-inoculation days (PIDs)-1,3,5,7,11,14 and weekly thereafter up to PID 70. Clinical alterations were observed (hypothermia and anorexia) in infected sheep from groups GI and GII. Parasitic outbreaks were detected in five sheep. All the infected sheep produced antibodies against T. gondii from PID 5 onwards, reaching a peak of 4096 and 8192 for group GI and GII sheep, respectively. Differences (P<0.05) were observed regarding the ejaculate volume between the inoculated groups (oocytes and tachyzoites) and control. Even though experimental toxoplasmic infection resulted in clinical symptomology in the inoculated sheep, the minimal alterations in sperm pathologies could not be directly attributed to T. gondii.  相似文献   

19.
Porcine epidemic diarrhea virus (PEDV) was identified in the United States (U.S.) swine population for the first time in April 2013 and rapidly spread nationwide. However, no information has been published regarding the minimum infectious dose (MID) of PEDV in different pig models. The main objective of this study was to determine the oral minimum infectious dose of PEDV in naïve conventional neonatal piglets and weaned pigs. A U.S. virulent PEDV prototype isolate (USA/IN19338/2013) with known infectious titer was serially ten-fold diluted in virus-negative cell culture medium. Dilutions with theoretical infectious titers from 560 to 0.0056 TCID50/ml together with a medium control were orogastrically inoculated (10ml/pig) into 7 groups of 5-day-old neonatal pigs (n = 4 per group) and 7 groups of 21-day-old weaned pigs (n = 6 per group). In 5-day-old pigs, 10ml of inoculum having titers 560–0.056 TCID50/ml, corresponding to polymerase chain reaction (PCR) cycle threshold (Ct) values 24.2–37.6, resulted in 100% infection in each group; 10ml of inoculum with titer 0.0056 TCID50/ml (Ct>45) caused infection in 25% of the inoculated pigs. In 21-day-old pigs, 10ml of inoculum with titers 560–5.6 TCID50/ml (Ct 24.2–31.4) resulted in 100% infection in each group while 10ml of inoculum with titers 0.56–0.0056 TCID50/ml (Ct values 35.3 –>45) did not establish infection in any pigs under study conditions as determined by clinical signs, PCR, histopathology, immunohistochemistry, and antibody response. These data reveal that PEDV infectious dose is age-dependent with a significantly lower MID for neonatal pigs compared to weaned pigs. This information should be taken into consideration when interpreting clinical relevance of PEDV PCR results and when designing a PEDV bioassay model. The observation of such a low MID in neonates also emphasizes the importance of strict biosecurity and thorough cleaning/disinfection on sow farms.  相似文献   

20.
The endogenous development and pathogenicity of Eimeria neodebliecki Vetterling, 1965 are described in weaned pigs inoculated with 250 000 oocysts. The endogenous stages developed within the apical cytoplasm of the enterocytes of the middle and posterior jejunum. The asexual development comprised two generations of meronts. Immature and mature meronts were found in groups up to five per host cell. The first fully developed macrogametes and mature microgamonts were seen at 9 days post-infection (DPI). The prepatent period was 10 days, and the patent period lasted 6–8 days. Sporulation of oocysts was completed within 12 days at 25°C, and 16 days at 20°C. E. neodebliecki infection produced clinical signs of coccidiosis in weaned pigs which developed frothy or mucoid diarrhea from 9 to 12 DPI. Pathological changes were situated in the second half of the small intestine, with the predilection for the posterior jejunum. At 9 and 10 DPI, macroscopically, ranged from catarrhal to focal, pseudomembranous inflammatory lesions. Histopathological and SEM examinations revealed moderate villous atrophy with focal epithelial erosions and fibrinonecrotic material at the villous tips. E. neodebliecki is pathogenic for pigs and can be associated with clinical manifestation of diarrhea, stunted growth and poor condition in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号