首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Growth and P-nutrition of transgenic Trifolium subterraneum L. which express a chimeric fungal phytase gene (ex::phyA) was compared to azygous and wild-type controls in a range of soils that differed in organic P content. Shoot and root growth by plant lines were measured and effects of reducing the influence of soil microorganisms were investigated by pasteurising the soils. Plants that expressed phyA did not have better P-nutrition than control plants after 56 days growth, except in a soil that contained a large concentration of both total organic P and organic P that was amenable to hydrolysis by a plant-derived phytase. Pasteurisation had little effect on the relative P-nutrition of the various plant lines in any of the soils. Roots of transgenic plants that expressed ex::phyA were shorter than controls up to 21 days growth in a number of soils, which resulted in an initial greater P accumulation efficiency. However, greater P accumulation efficiency was only maintained in the soil where significant growth and P nutrition responses were also observed. Availability of inositol phosphates in soil is a major factor that limits the effectiveness of expressing fungal phytase genes in plants as a means to improve P-nutrition. Reducing the influence of rhizosphere microorganisms appeared to have little effect on the P-nutrition of plant lines, but the longer root system produced by control plants may have initially provided them with greater access to soil P resources. This research highlights the inherent difficulty in improving the P-nutrition of plants by the manipulation of single traits in isolation, but does provide some evidence that such approaches can be successful under certain edaphic conditions.  相似文献   

2.
Bacteria of the Bacillus species have been reported as an important microorganism in fermented soybean products. In the present study, thirty Bacillus isolates were screened from Meju, a Korean soybean fermentation starter. The comparative analysis of 16S rDNA sequences, 16S-23S internal transcribed spacer sequences, phenotypic, and biochemical characterizations revealed three phylogenetically distinct groups namely Bacillus atrophaeus, Bacillus polyfermenticus and Bacillus subtilis. The isolates were assayed for poly-γ-glutamate production and fibrinolytic activity. Among the isolates, B. polyfermenticus exhibited maximum poly-γ-glutamate production and fibrinolytic activity. Moreover, the soybean products fermented by B. polyfermenticus have increased the time taken for coagulation and hemorrhage in mice. The results of the present study clearly indicate the functional role of B. polyfermenticus in fermented soybean products.  相似文献   

3.
Phosphate solubilizing microorganisms are ubiquitous in soils and could play an important role in supplying P to plants where plant unavailable P content in soil was more. A phosphatase and phytase producing fungus Emericella rugulosa was isolated and tested under field condition (Pearl millet as a test crop) in a loamy sand soil. In the experimental soil 68% organic phosphorous was present as phytin; less than 1% of phosphorous was present in a plant available form. The maximum effect of inoculation on different enzyme activities (acid phosphatase, alkaline phosphatase, phytase, and dehydrogenase) was observed between 5 and 8 weeks of plant age. The depletion of organic P was much higher than mineral and phytin P. The microbial contribution was significantly higher than the plant contribution to the hydrolysis of the different P fractions. A significant improvement in plant biomass, root length, seed and straw yield and P concentration of root and shoot resulted from inoculation. The results suggest that Emericella rugulosa produces phosphatases and phytase, which mobilize P and enhance the production of pearl millet.  相似文献   

4.
Alkaline protease production by a newly isolated Bacillus species from laundry soil was studied for detergent biocompatibility. From its morphological and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus species with similarity to Bacillus species Y (Gen Bank entry: ABO 55095), and close homology with Bacillus cohnii YN-2000 (Gen Bank entry: ABO23412). Partial purification of the enzyme by ammonium sulfate (50–70% saturation) yielded 8-fold purity. Casein zymography and Sodium dodecylsulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) of the partially purified enzyme revealed two isozymes of molecular sizes approximately 66 kDa and 18 kDa, respectively. The enzyme was most active at pH 12 and 50°C. At pH 12 the enzyme was stable for 5 h and retained 60% activity. The enzyme retained 44% activity at 50°C up to 2 h. The protease showed good hydrolysis specificity with different substrates tested. The presence of Mn2+, Co2+ and ethylenediaminetetracetic acid (EDTA) showed profound increase in protease activity. The protease of Bacillus species Y showed excellent stability and compatibility with three locally available detergents (Kite, Tide and Aerial) up to 3 h retaining almost 70–80% activity and 10–20% activity at room temperature (30°C) and 50°C, respectively, indicating the potential role of this enzyme for detergent application.  相似文献   

5.
Present investigation is based on the isolation of Bacillus subtilis from cotton rhizosphere and their evaluation as biocontrol agent against Fusarium oxysporum. The production of extracellular hydrolytic enzyme was studied for determining the antagonism. 43% of 21 isolates were identified under the B. subtilis group on the basis of biochemical characterization. 38% isolates showed competitive activity against Fusarium oxysporum and exhibit more than 50% mycelial inhibition in dual culture bioassay. The pot assay of cotton by seed treatment and soil amendment technique under green house condition showed the competent activity of the isolates in preventing the wilting of cotton seedlings due to F. oxysporum infection. SVI values of 30 day old seedlings indicated that the soil inoculation with B. subtilis BP-2 and seed treatment with B. subtilis BP-9 significantly promoted the growth of cotton seedlings. RAPD profiling revealed the diversity in the Bacillus subtilis group, ranging from 10 to 32%. The discriminative pattern among the isolates belonging to the same species was validated by 16S rDNA partial sequencing which identified them into four different strains of B. subtilis.  相似文献   

6.
A phytase with high activity at neutral pH and typical water temperatures (∼25°C) could effectively hydrolyze phytate in aquaculture. In this study, a phytase-producing strain, Pedobacter nyackensis MJ11 CGMCC 2503, was isolated from glacier soil, and the relevant gene, PhyP, was cloned using degenerate PCR and thermal asymmetric interlaced PCR. To our knowledge, this is the first report of detection of phytase activity and cloning of phytase gene from Pedobacter. PhyP belongs to beta-propeller phytase family and shares very low identity (∼28.5%) with Bacillus subtilis phytase. The purified recombinant enzyme (r-PhyP) from Escherichia coli displayed high specific activity for sodium phytate of 24.4 U mg−1. The optimum pH was 7.0, and the optimum temperature was 45°C. The K m, V max, and k cat values were 1.28 mM, 71.9 μmol min−1 mg−1, and 45.1 s−1, respectively. Compared with Bacillus phytases, r-PhyP had higher relative activity at 25°C (r-PhyP (>50%), B. subtilis phytase (<8%)) and hydrolyzed phytate from soybean with greater efficacy at neutral pH. These characteristics suggest that r-PhyP might be a good candidate for an aquatic feed additive in the aquaculture industry.  相似文献   

7.
A transgenic approach was used to alter soybean seed phytate content by expressing a soybean phytase gene (GmPhy) during seed development to degrade accumulating phytic acid (IP6). An expression vector containing the soybean phytase cDNA controlled by the seed-specific -conglycinin promoter (-subunit) was used to transform embryogenic soybean cultures. Plants from four independent transgenic lines were analyzed for transgene integration and seed IP6 levels. The reduction in IP6 levels in transgenic seeds compared to control Jack soybeans ranged from 12.6 to 24.8 as determined by HPLC. A low copy transformant was propagated to the T4 generation and examined in more detail for phytase expression and enzyme activity during seed development. Expression of phytase mRNA and phytase activity increased during seed development, consistent with the use of an embryo-specific promoter. Ectopic phytase expression during seed development offers potential as an effective strategy for reducing phytate content in soybean seed.  相似文献   

8.
A study was conducted to determine whether colonization of legume roots and nodulation byRhizobium meliloti andBradyrhizobium japonicum could be enhanced by using inocula containing microorganisms that produce antibiotics suppressing soil or rhizosphere inhabitants but not the root-nodule bacteria. An antibiotic-producing strain of Pseudomonas and one of Bacillus were isolated, and mutants ofR. meliloti andB. japonicum sp. resistant to the antibiotics were used. The colonization of the alfalfa rhizosphere and nodulation byR. meliloti were enhanced by inoculation of soil withPseudomonas sp. in soil initially containing 2.7×105 R. meliloti per g. The colonization of soybean roots byB. japonicum was enhanced by inoculating soil with three cell densities ofBacillus sp., and nodulation was stimulated byBacillus sp. added at two cell densities. In some tests, the dry weights of soybeans and seed yield increased as a result of these treatments, and co-inoculation with Bacillus also increased pod formation. Inoculation of seeds withBacillus sp. and the root-nodule bacterium enhanced nodulation of soybeans and alfalfa, but colonization byB. japonicum andR. meliloti was stimulated only during the early period of plant growth. Studies were also conducted withStreptomyces griseus and isolates ofR. meliloti andB. japonicum resistant to products of the actinomycete. Nodulation of alfalfa byR. meliloti was little or not affected by the actinomycete alone; however, both nodulation and colonization were enhanced if the soil was initially amended with chitin andS. griseus was also added. Chitin itself did not affectR. meliloti. Treatments of seeds with chitin orS. griseus alone did not enhance colonization of alfalfa roots byR. meliloti or soybean roots byB. japonicum, but the early colonization of the roots by both bacterial species was promoted if the seeds received both chitin andS. griseus; this treatment also increased nodulation and dry weights of alfalfa and soybeans and the N content of alfalfa. It is suggested that co-inoculation of legumes with antibiotic-producing microorganisms and root-nodule bacteria resistant to those antibiotics is a promising means of promoting nodulation and possibly nitrogen fixation.  相似文献   

9.
In this study, we have investigated the plant growth promoting effect of Bacillus mucilaginosus strain D4B1, a rhizosphere soil organism, and its transgenic strain NKTS-3 on tobacco planting. The transgenic strain contains a phytase expression cassette that can express high active phytase extracellularly and hydrolyze phytate in the soil to liberate inorganic phosphorus for the growth of tobacco plants. Greenhouse study and field experiments showed that both wild-type B. mucilaginosus and the transgenic strain could promote tobacco plant growth. Moreover, the transgenic strain promoted tobacco plant growth (235% more than control in pot experiments and 125% more than control in field experiments) was higher than the wild-type B. mucilaginosus (183% more than control in pot experiments and 108% more than control in field experiments). In addition, the inoculation with transgenic rhizobacteria could significantly improve root acquisition of phosphorus and increase the phosphorus content of the plant.  相似文献   

10.
Alkaline phytases from Bacillus species, which hydrolyze phytate to less phosphorylated myo-inositols and inorganic phosphate, have great potential as additives to animal feed. The thermostability and neutral optimum pH of Bacillus phytase are attributed largely to the presence of calcium ions. Nonetheless, no report has demonstrated directly how the metal ions coordinate phytase and its substrate to facilitate the catalytic reaction. In this study, the interactions between a phytate analog (myo-inositol hexasulfate) and divalent metal ions in Bacillus subtilis phytase were revealed by the crystal structure at 1.25 Å resolution. We found all, except the first, sulfates on the substrate analog have direct or indirect interactions with amino acid residues in the enzyme active site. The structures also unraveled two active site-associated metal ions that were not explored in earlier studies. Significantly, one metal ion could be crucial to substrate binding. In addition, binding of the fourth sulfate of the substrate analog to the active site appears to be stronger than that of the others. These results indicate that alkaline phytase starts by cleaving the fourth phosphate, instead of the third or the sixth that were proposed earlier. Our high-resolution, structural representation of Bacillus phytase in complex with a substrate analog and divalent metal ions provides new insight into the catalytic mechanism of alkaline phytases in general.  相似文献   

11.
Eight different strains ofBacillus were isolated from fermented fish (Budu) and their proteolytic enzyme activities were determined after 18 h cultivation at room temperature (35° C). Four isolates possessed high protease activities. Optimum pH for these enzymes was between 7.0 and 8.0 and the optimal temperature was 55° C. The proteases retained 40% of their original activity after 20 min at 55° C but lost all activity at 65° C. Three of the four isolates were identified asBacillus subtilis, the fourth asBacillus licheniformis.  相似文献   

12.
The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn’t produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6–52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05).These results suggested that the Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems.  相似文献   

13.
Four species of Bacillus were isolated from soil in an effort to find safe, effective and alternative biological control agents against plant pests. These bacteria were identified as Bacillus pumilus, Bacillus sphaericus, Bacillus megaterium and Bacillus cereus on the basis of fatty acid methyl ester analysis and carbon utilization profiles by using Microbial Identification and Biolog Microplate Systems. Laboratory experiments carried out to determine the insecticidal activities of these isolates showed that B. pumilus caused 95.7 and 26.7% mortality and B. sphaericus caused 74.5 and 23.3% mortality of Leptinotarsa decemlineata larvae and adults, respectively. B. cereus and B. megaterium showed 51.1 and 29.7%, respectively, of L. decemlineata larvae. This study presents at least two Turkish isolates from the genus Bacillus showing high insecticidal activity against L. decemlineata.  相似文献   

14.
Co-inoculation with antibiotic-producing bacteria and rhizobia resistant to those antibiotics has been proposed as a means of promoting colonization and nodulation of legumes by root-nodule bacteria. A study was conducted to establish some of the factors affecting co-inoculation with antibiotic-producing strains of Bacillus and Streptomyces griseus. The stimulation of Rhizobium meliloti and yield and N uptake by alfalfa was enhanced with increasing inoculum size of Bacillus sp. S. griseus and chitin added to soil increased nodulation of soybeans by Bradyrhizobium japonicum and increased nodulation, yield, and number of pods on a second crop grown in the same soil. Bacillus sp. persisted in soil in sufficient numbers for at least 51 days to increase colonization of soybean roots by B. japonicum. The populations of S. griseus, Bacillus sp., and antibiotic-resistant isolates of R. meliloti and B. japonicum fell after their addition to seeds. Nevertheless, a benefical effect by the antibiotic-producing bacteria was evident on R. meliloti colonization of the rhizosphere, nodulation, and yield of alfalfa grown from seeds stored 94 days and on B. japonicum colonization, nodule number, yield, and seed weight of soybeans grown from seeds stored 90 days. Because non-antibiotic-producing derivatives of Bacillus sp. and S. griseus did not promote colonization or nodulation of alfalfa roots by R. meliloti, the benefit of this co-inoculation is a result of antibiotic formation.  相似文献   

15.
Two fold increase in the yield of glucose and maltose containing exo-polysaccharide (EPS) by Rhizobium sp. was observed during its growth in modified YEMB. EPS production, plant growth promotion activity and root colonization of Rhizobium sp. studies showed enhanced EPS synthesis, more seed germination and over all improvement in plant growth over control and R. meliloti treatment. Groundnut seeds bacterized with Rhizobium sp. resulted in 69.75% more root length, 49.51% more shoot height, 13.75% more number of branches and 13.60% more number of pods over the control and R. meliloti treatment. Bacterization of wheat seeds increased the dry matter yield of roots (1.7-fold), and roots adhering soil (RAS) (1.5) and shoot mass (1.9-fold). Rhizobium sp. inoculation also increased the population density of EPS-producing bacteria on the rhizoplane. Roots of plants inoculated with Rhizobium sp. maintained a higher K+/Na+ ratio and K+–Na+ selectivity.  相似文献   

16.
The immobilization of enzymes on edible matrix supports is of great importance for developing stabilized feed enzymes. In this study, probiotic Bacillus spores were explored as a matrix for immobilizing Escherichia coli phytase, a feed enzyme releasing phosphate from phytate. Because Bacillus spore is inherently resistant to heat, solvents and drying, they were expected to be a unique matrix for enzyme immobilization. When mixed with food-grade Bacillus polyfermenticus spores, phytases were adsorbed to their surface and became immobilized. The amount of phytase attached was 28.2 ± 0.7 mg/g spores, corresponding to a calculated activity of 63,960 U/g spores; however, the measured activity was 41,120 ± 990.1 U/g spores, reflecting a loss of activity upon adsorption. Immobilization increased the half life (t1/2) of the enzyme three- to ten-fold at different temperatures ranging from 60 to 90 °C. Phytase was bound to the spore surface to the extent that ultrasonication treatment was not able to detach phytases from spores. Desorption of spore-immobilized phytase was only achieved by treatment with 1 M NaCl, 10% formic acid in 45% acetonitrile, SDS, or urea, suggesting that adsorption of phytase to the spore might be via hydrophobic and electrostatic interactions. We propose here that Bacillus spore is a novel immobilization matrix for enzymes that displays high binding capacity and provides food-grade safety.  相似文献   

17.
The physical and chemical properties of six crude phytase preparations were compared. Four of these enzymes (Aspergillus A, Aspergillus R, Peniophora and Aspergillus T) were produced at commercial scale for the use as feed additives while the other two (E. coli and Bacillus) were produced at laboratory scale. The encoding genes of the enzymes were from different microbial origins (4 of fungal origin and 2 of bacterial origin, i.e., E. coli and Bacillus phytases). One of the fungal phytases (Aspergillus R) was expressed in transgenic rape. The enzymes were studied for their pH behaviour, temperature optimum and stability and resistance to protease inactivation. The phytases were found to exhibit different properties depending on source of the phytase gene and the production organism. The pH profiles of the enzymes showed that the fungal phytases had their pH optima ranging from 4.5 to 5.5. The bacterial E. coli phytase had also its pH optimum in the acidic range at pH 4.5 while the pH optimum for the Bacillus enzyme was identified at pH 7.0. Temperature optima were at 50 and 60°C for the fungal and bacterial phytases, respectively. The Bacillus phytase was more thermostable in aqueous solutions than all other enzymes. In pelleting experiments performed at 60, 70 and 80°C in the conditioner, Aspergillus A, Peniophora (measurement at pH 5.5) and E. coli phytases were more heat stable compared to other enzymes (Bacillus enzyme was not included). At a temperature of 70°C in the conditioner, these enzymes maintained a residual activity of approximately 70% after pelleting compared to approximately 30% determined for the other enzymes. Incubation of enzyme preparations with porcine proteases revealed that only E. coli phytase was insensitive against pepsin and pancreatin. Incubation of the enzymes in digesta supernatants from various segments of the digestive tract of hens revealed that digesta from stomach inactivated the enzymes most efficiently except E. coli phytase which had a residual activity of 93% after 60 min incubation at 40°C. It can be concluded that phytases of various microbial origins behave differently with respect to their in vitro properties which could be of importance for future developments of phytase preparations. Especially bacterial phytases contain properties like high temperature stability (Bacillus phytase) and high proteolytic stability (E. coli phytase) which make them favourable for future applications as feed additives.  相似文献   

18.
Metabolic activities of four Bacillus strains to transform glucose into hydrogen (H2) and polyhydroxybutyrate (PHB) in two stages were investigated in this study. Under batch culture conditions, Bacillus thuringiensis EGU45 and Bacillus cereus EGU44 evolved 1.67–1.92 mol H2/mol glucose, respectively during the initial 3 days of incubation at 37°C. In the next 2 days, the residual glucose solutions along with B. thuringiensis EGU45 shaken at 200 rpm was found to produce PHB yield of 11.3% of dry cell mass. This is the first report among the non-photosynthetic microbes, where the Bacillus spp.—B. thuringiensis and B. cereus strains have been shown to produce H2 and PHB in same medium under different conditions.  相似文献   

19.
Aims: To isolate, clone and express a novel phytase gene (phy) from Bacillus sp. in Escherichia coli; to recover the active enzyme from inclusion bodies; and to characterize the recombinant phytase. Methods and Results: The molecular weight of phytase was estimated as 40 kDa on SDS-polyacrylamide gel electrophoresis. A requirement of Ca2+ ions was found essential both for refolding and activity of the enzyme. Bacillus phytase exhibited a specific activity of 16 U mg−1 protein; it also revealed broad pH and temperature ranges of 5·0 to 8·0 and 25 to 70°C, respectively. The Km value of phytase for hydrolysis of sodium phytate has been determined as 0·392 mmol l−1. The activity of enzyme has been inhibited by EDTA. The enzyme exhibited ample thermostability upon exposure to high temperatures from 75 to 95°C. After 9 h of cultivation of transformed E. coli in the bioreactor, the cell biomass reached 26·81 g wet weight (ww) per l accounting for 4289 U enzyme activity compared with 1·978 g ww per l producing 256 U activity in shake-flask cultures. In silico analysis revealed a β-propeller structure of phytase. Conclusions: This is the first report of its kind on the purification and successful in vitro refolding of Bacillus phytase from the inclusion bodies formed in the transformed E. coli. Significance and Impact of the Study: Efficient and reproducible protocols for cloning, expression, purification and in vitro refolding of Bacillus phytase enzyme from the transformed E. coli have been developed. The novel phytase, with broad pH and temperature range, renaturation ability and substrate specificity, appears promising as an ideal feed supplement. Identification of site between 179th amino acid leucine and 180th amino acid asparagine offers scope for insertion of small peptides/domains for production of chimeric genes without altering enzyme activity.  相似文献   

20.
Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号