首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Molecular Phylogeny of the Aphidiinae (Hymenoptera: Braconidae)   总被引:1,自引:0,他引:1  
Phylogenetic relationships within the Aphidiinae, and between this and other subfamilies of Braconidae (Hymenoptera), were investigated using sequence data from three genes: elongation factor-1α, cytochrome b, and the second expansion segment of the 28S ribosomal subunit. Variation in both protein-coding genes was characterized by a high level of homoplasy, but analysis of the expansion segment—robust over a range of alignment methods and parameters—resolved some of the older divergences. Parsimony analysis of the combined data suggests the following tribal relationships: (Ephedrini + (Praini + (Aphidiini + Trioxini))). In addition, the cyclostome subfamilies were found to form a clade separate from the Aphidiinae, but relationships between the Aphidiinae and the noncyclostome braconids could not be resolved. The inferred phylogeny also supported a secondary loss of internal pupation within the Praini and a polyphyletic origin of endoparasitism within the Braconidae.  相似文献   

2.
Wasps of the braconid subfamily Aphidiinae are solitary endoparasitoids of aphids. Several aspects of their biology have been the focus of intuitive evolutionary hypotheses which could be tested with a robust phylogeny. Phylogenetic hypotheses have been proposed previously for aphidiines based on morphology, embryology, and DNA sequences. However, many of them are based on a limited number of characters and/or taxa and lack congruence. In addition, many of the inferred phylogenies have not been based upon cladistic analysis. Therefore, a phylogenetic study of Aphidiinae was undertaken, utilizing 465 bp of DNA sequence of the mitochondrial NADH1 dehydrogenase gene. DNA sequences were obtained from 40 taxa, including 14 genera and three outgroups. It is suggested that in agreement with most of the previously proposed phylogenies, the aphidiines, each of the three recognized tribes (Praini, Ephedrini, Aphidiini), and most genera are monophyletic. In contrast to previously proposed phylogenies, the clade of Praon + Dyscritulus (=Praini), rather than Ephedrini, is basal among the aphidiines.  相似文献   

3.
Abstract.  Molecular phylogenetic methods were used to examine morphologically based hypotheses concerning the taxonomic structure and relationships of the grasshopper subfamily Gomphocerinae. Two mitochondrial gene (cytochrome b and cytochrome oxidase subunit I) sequences were determined for twenty-five species representing eleven Palaearctic genera. The studied Gomphocerinae species constituted a monophyletic group; furthermore, the earlier division of Gomphocerinae into tribes was supported, with each tribe monophyletic. There was no support for various systems uniting Stenobothrini and Gomphocerini into one tribe. Two separate clusters were discerned in Gomphocerini and two tribes were distinguished – Gomphocerini (genera Aeropus , Stauroderus , Chorthippus ) and Stenobothrini (genera Omocestus , Stenobothrus ).  相似文献   

4.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

5.
锯凤蝶族Zerynthiini的分类地位一直受到国内外学者的关注.本文对锯凤蝶族Zerynthiini、绢蝶族Parnassiini及凤蝶亚科Papilioninae中相关族的幼虫形态、翅脉、翅面斑纹、鳞片、雌性交配栓、雄性外生殖器、地理分布与历史变迁,进行了比较研究,对这些类群的亲缘关系进行了初步探讨.结果表明:锯凤蝶族可能是由绢蝶亚科某一古老或已灭绝的族中演化而来,应作为绢蝶亚科下的一个族,不应作为亚科对待;锯凤蝶族和绢蝶族同属绢蝶亚科,绢蝶亚科和凤蝶亚科同属凤蝶科.  相似文献   

6.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

7.
The subfamily Typhlocybinae is a ubiquitous, highly diverse group of mostly tiny, delicate leafhoppers. The tribal classification has long been controversial and phylogenetic methods have only recently begun to test the phylogenetic status and relationships of tribes. To shed light on the evolution of Typhlocybinae, we performed phylogenetic analyses based on 28 newly sequenced and 19 previously sequenced mitochondrial genomes representing all currently recognized tribes. The results support the monophyly of the subfamily and its sister‐group relationship to Mileewinae. The tribe Zyginellini is polyphyletic with some included genera derived independently within Typhlocybini. Ancestral character state reconstruction suggests that some morphological characters traditionally considered important for diagnosing tribes (presence/absence of ocelli, development of hind wing submarginal vein) are homoplastic. Divergence time estimates indicate that the subfamily arose during the Middle Cretaceous and that the extant tribes arose during the Late Cretaceous. Phylogenetic results support establishment of a new genus, Subtilissimia Yan & Yang gen. nov., with two new species, Subtilissimia fulva Yan & Yang sp. nov. and Subtilissimia pellicula Yan & Yang sp. nov.; but indicate that two previously recognized species of Farynala distinguished only by the direction of curvature of the processes of the aedeagus are synonyms, that is, Farynala dextra Yan & Yang, 2017 equals Farynala sinistra Yan & Yang, 2017 syn. nov. A key to tribes of Typhlocybinae is provided.  相似文献   

8.
本研究选取优茧蜂亚科Euphorinae(膜翅目Hymenoptera:茧蜂科Braconidae)的8族19属23种作为内群,茧蜂其它6个亚科的8属8种作外群,首次结合同源核糖体28S rDNA D2基因序列片段和41个形态学特征对该亚科进行了系统发育学研究。利用"圆口类"的内茧蜂亚科Rogadinae、茧蜂亚科Braconinae、矛茧蜂亚科Doryctinae的3个亚科为根,以PAUP*4.0和MrBayes3.0B4软件分别应用最大简约法(MP)和贝叶斯法对优茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了分析;并以PAUP*4.0对优茧蜂亚科的28S rDNA D2基因序列的片段的碱基组成与碱基替代情况进行了分析。结果表明:优茧蜂亚科的28S rDNA D2基因序列片段的GC%含量在40.00%~49.25%之间变动,而对于碱基替代情况来讲,优茧蜂亚科各个成员间序列变异位点上颠换(transversion)大于转换(transition);不同的分析和算法所产生的系统发育树都表明目前根据形态定义出的优茧蜂亚科Euphorinae不是一个单系群,而是一个与蚁茧蜂亚科Neoneurinae和高腹茧蜂亚科Cenocoelinae混杂在一起的并系群;在优茧蜂亚科内部,悬茧蜂族Meterorini和食甲茧蜂族Microctonini(排除猎户茧蜂属Orionis)为单系群,而宽鞘茧蜂族Centistini、大颚茧蜂族Cosmophorini、优茧蜂族Euphorini、瓢虫茧蜂族Dinocampini为并系群;悬茧蜂族Meterorini在优茧蜂亚科Euphorinae内位于基部位置的观点得到部分的支持,同时食甲茧蜂族Microctonini被判定为相对进化的类群。此外对于优茧蜂亚科内各属之间的相互亲缘关系,不同算法所得到的系统发育属的结果不完全一致,这表明优茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

9.
Eulophidae is a large and biologically varied family of parasitoid wasps, traditionally split into four subfamilies; Elasmidae is a uniform (single genus) and morphologically distinct family of wasps that are thought to be related to Eulophidae. The D2 region of the 28S rDNA gene (≈ 560 bp) of eighty‐seven species of eulophid, three species of elasmid and sixteen outgroup species in five families was sequenced. Cladograms were constructed, and the results compared with conclusions drawn from morphological studies. The gene was most informative at the level of subfamily and tribe. The monophyly of both Eulophinae and Tetrastichinae is supported; that of Entedoninae and Euderinae is less clear. Results indicate that Eulophinae is a derived group within Eulophidae, rather than an ancestral group as previously thought, and that Elasmus, the sole genus of Elasmidae, belongs within this subfamily. The tribes of Eulophinae are reassessed and only three accepted: Eulophini (including Euplectrini and Elachertini), Elasmini and Cirrospilini LaSalle trib.n. for Bou?ek's Ophelimini with Ophelimus and Australsecodes excluded. Three small Australian tribes, Anselmellini, Ophelimini and Platytetracampini, are removed from Eulophinae and Entedoninae, respectively, but their exact relationships and subfamily status cannot as yet be decided. Another tribe, Keryini, known from a single Australian genus, is excluded from both Eulophinae and Eulophidae.  相似文献   

10.
隙蛛亚科Coelotinae主要分布于东亚地区,其中我国的已有种类占到全世界种数的一半以上,因此对于我国隙蛛类蜘蛛的研究已经成为世界暗蛛科研究的重点之一。隙蛛亚科属于无筛器类群,于1893年,由Cambridge以隙蛛属为模式属而建立,归属于无筛器的漏斗蛛科。之后,虽然经历了数次修订  相似文献   

11.
Abstract.  According to the most recent classifications proposed, the planthopper family Cixiidae comprises three subfamilies, namely Borystheninae, Bothriocerinae and Cixiinae, the latter with 16 tribes. Here we examine morphological characters to present the first phylogenetic reconstructions within Cixiidae derived from a cladistic analysis. We scored 85 characters of the head, thorax, and male and female genitalia for 50 taxa representative of all cixiid subfamilies and tribes and for six outgroup taxa. Analyses were based on maximum parsimony – using both equally weighted and successive weighting procedures – and Bayesian inferences. The monophyly of most currently accepted tribes and subfamilies was investigated through Templeton statistical tests of alternative phylogenetic hypotheses. The cladistic analyses recover the monophyly of Cixiidae, the subfamily Bothriocerinae, and the tribes Pentastirini, Mnemosynini, and Eucarpiini. Successive weighting and Bayesian inference recover the monophyly of the tribe Gelastocephalini, but only Bayesian inference supports the monophyly of Semoniini. The relationships recovered support the groups [Stenophlepsini (Borystheninae + Bothriocerinae)] arising from the tribe Oecleini, and [Andini + Brixiidini + Brixiini (polyphyletic) + Bennini]. Templeton tests reject the alternative hypothesis of a monophyletic condition for the tribe Pintaliini as presently defined.  相似文献   

12.
13.
We examine the phylogenetic relationships of more than 40 species of European satyrids representing six tribes (Coenonymphini, Erebiini, Maniolini, Satyrini, Melanargiini, and Lethini). The analyses are based on comparisons of morphological data and mitochondrial genes encoding the large ribosomal subunit (16S rDNA) and NADH dehydrogenase subunit 1 (ND1). The cladistic reassessment of systematics based on morphological characters differs from the view retained by Miller by a lack in resolution due to the low number of characters used. Furthermore, some level of incongruence about the monophyly of the tribes is found between topologies from morphological and molecular analyses. In the case of Aphantopus hyperantus, molecular data and reexamination of morphology of this taxon indicate that this species has to be included within Maniolini. Contrary to the other clades, Erebia displays a radiate systematic pattern which cannot be explained by a lack of variable or informative sites. The combined spatial and temporal specialization found in the Erebia species may explain the rapid diversification of this genus relative to other satyrids. Finally, the subfamily level as defined by Miller for the taxa presented in the data set (Satyrinae and Elymninae) is not consistent with the molecular data. Given the reassessment of satyrids as a subfamily within Nymphalidae (Satyrinae), it seems more appropriate to retain the tribes as valid taxonomic ranks only in Satyrinae.  相似文献   

14.
Providing accurate animals’ phylogenies rely on increasing knowledge of neglected phyla. Tardigrada diversity evaluated in broad phylogenies (among phyla) is biased towards eutardigrades. A comprehensive phylogeny is demanded to establish the representative diversity and propose a more natural classification of the phylum. So, we have performed multilocus (18S rRNA and 28S rRNA) phylogenies with Bayesian inference and maximum likelihood. We propose the creation of a new class within Tardigrada, erecting the order Apochela (Eutardigrada) as a new Tardigrada class, named Apotardigrada comb. n. Two groups of evidence support its creation: (a) morphological, presence of cephalic appendages, unique morphology for claws (separated branches) and wide‐elongated buccopharyngeal apparatus without placoids, and (b) phylogenetic support based on molecular data. Consequently, order Parachela is suppressed and its superfamilies erected as orders within Eutardigrada, maintaining their current names. We propose a new classification within the family Echiniscidae (Echiniscoidea, Heterotardigrada) with morphological and phylogenetic support: (a) subfamily Echiniscinae subfam. n., with two tribes Echiniscini tribe n. and Bryodelphaxini tribe n.; (b) subfamily Pseudechiniscinae subfam. n., with three tribes Cornechiniscini tribe n., Pseudechiniscini tribe n. and Anthechiniscini tribe n.; and (c) subfamily Parechiniscinae subfam. n., with two tribes Parechiniscini tribe n. and Novechiniscini tribe n. Reliable biodiversity selection for tardigrades in broad phylogenies is proposed due to biased analyses performed up to now. We use our comprehensive molecular phylogeny to evaluate the evolution of claws in the clawless genus Apodibius and claw reduction across the Tardigrada tree of life. Evolutionary consequences are discussed.  相似文献   

15.
The carabid subfamily Harpalinae contains most of the species of carabid beetles. This subfamily, with over 19,000 species, radiated in the Cretaceous to yield a large clade that is diverse in morphological form and ecological habit. While there are several morphological, cytological, and chemical characters that unite most harpalines, the placement of some tribes within the subfamily remains controversial, as does the sister group relationships to this large group. In this study, DNA sequences from the 28S rDNA gene and the wingless nuclear protein-coding gene were collected from 52 carabid genera representing 31 harpaline tribes in addition to more than 21 carabid outgroup taxa to reconstruct the phylogeny of this group. Molecular sequence data from these genes, along with additional data from the 18S rDNA gene, were analyzed with a variety of phylogenetic analysis methods, separately for each gene and in a combined data approach. Results indicated that the subfamily Harpalinae is monophyletic with the enigmatic tribes of Morionini, Peleciini, and Pseudomorphini included within it. Brachinine bombardier beetles are closely related to Harpalinae as they form the sister group to harpalines or, in some analyses, are included within it or with austral psydrines. The austral psydrines are the sister group to Harpalinae+Brachinini clade in most analyses and austral psydrines+Brachinini+Harpalinae clade is strongly supported.  相似文献   

16.
The phylogenetic relationships within the fungus gnat subfamily Mycetophilinae (Diptera) are addressed using a combined morphological and molecular approach. Twenty-four species, representing nine genera of the tribe Mycetophilini and 15 genera of the tribe Exechiini, were included in the study. Analyses include nucleotide sequences of mitochondrial (cytochrome oxidase I and 16S), and nuclear (18S and 28S rDNA) genes, in addition to 65 morphological characters. A combined parsimony analysis, including all characters, supports the monophyly of the subfamily Mycetophilinae and two of its tribes, Exechiini and Mycetophilini. There is also statistical support for a Mycetophila- group and a Phronia- group within the tribe Mycetophilini. The Phronia- group includes the genera Phronia , Macrobrachius and Trichonta . The Mycetophila- group includes the genera Mycetophila , Epicypta , Platurocypta , Sceptonia and Zygomyia . A Bayesian analysis based on the nucleotide sequences alone also support these clades within Mycetophilini except for the position of Dynatosoma which is recovered as the sister taxon to the Phronia- group. A somewhat different pattern, however, is observed for the tribe Exechiini – neither molecular data nor the combined data set support unambiguously any intergeneric relationships within Exechiini.  相似文献   

17.
戴仁怀  陈学新  李子忠 《昆虫学报》2008,51(10):1055-1064
首次在国内利用28S rDNA D2区段和16S rDNA基因序列,结合50个形态特征对角顶叶蝉亚科(Deltocephalinae)[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]19个属进行系统发育分析研究。从无水乙醇浸泡保存的标本中提取基因组DNA并扩增了19个内群和1种外群Typhlocybinae[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]种类的28S rDNA D2基因片段并测序,同时扩增了16S rDNA基因片段并测序11条,采用了GenBank中1个种类的16S rDNA同源序列。采用PAUP*4.0和MrBayes3.0两个分析软件和3种建树方法,利用同源28S D2 rDNA和16S rDNA两个基因序列与形态特征结合进行系统发育分析研究。分析结果表明,二叉叶蝉族Macrostelini是一个单系,并在角顶叶蝉亚科的系统发育中处于基部的位置,是内群中最原始的族;角顶叶蝉族Deltocephalini中除了纹翅叶蝉属Nakaharanus,其余各属构成单系;殃叶蝉族Euscelini内属的归属比较混乱,可能是一个并系群,属间差异有待进一步研究。隆额叶蝉族Paralimnini与顶带叶蝉族Athysanini是姐妹群。带叶蝉属Scaphoideus与纹翅叶蝉属Nakaharanus是姐妹群,二者与木叶蝉属Phlogotettix的关系最近,三者构成一个单系,建议将三者归为带叶蝉族Scaphoideini。研究结果还表明,小眼叶蝉族Xestocephalini和Balcluthini的系统发育位置不明,有待进一步研究。  相似文献   

18.
19.
The D2 variable region of 28S ribosomal RNA was sequenced from ethanol specimens or obtained from the literature to provide the first phylogenetie reconstruction of the subfamily Euphorinae (Hymenoptera;Braconidae). Phylogenetic relationships were established by comparing the results using two different methods (distance-based neighbor-joining, NJ; and maximum parsimony, MP) and three different outgroups. The monophyly of the Euphorinae is well supported by all trees generated from molecular data. All phylogenetic reconstructions yielded trees with very similar topologies that only partially resolved the morphologically defined tribes and the relationships within the subfamily. We found no evidence for the monophyletic natures of the tribes Euphorinl, Dinocampini,Perilitini, Syntretini, Comsophorini and Centisitini, but we did find some evidence for the tribes Meteorini and Microctonini. The monophyletic nature of the tribe Meteodnl was well-supported in all trees. We also found the clade containing the LecythodeUa,Microctonus, Orionis and Streblocera to be a monophyletic group, which corresponded to the tribe Microtonini, with Orionis transferred from the tribe Eupholini into Microtonini.Among the genera of Euphorini our results showed strong support for a paraphyletic nature of this group, which can be roughly divided into two clades, one consisting of Aridelus Wesmaelia, the other of Leiophron Peristenus, suggesting both of which may be given tribal rank. The placement of the genus Chrysopophorus is largely uncertain. Two clades,Dinocampus Perilitus and Cosmophorus Rhopalophorus, were constantly resolved in our analyses, with 42-96 and 97-100 bootstrap value support, respectively, suggesting that both of them form monophyletic groups. For members of the Centistini, Pygostolus may be removed and included in Microctonini or other relative tribe.  相似文献   

20.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号