首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Fractionation of chromatin nonhistone proteins   总被引:2,自引:0,他引:2  
  相似文献   

5.
Pancreatic DNase I has been used to study the interaction between DNA and chromosomal proteins in extended and condensed chromatin fractions isolated from mouse and Chinese hamster livers. It was found that DNase digests extended chromatin at a faster rate than condensed chromatin, and the evidence suggests that the chromosomal proteins are more tightly complexed to the DNA in condensed than in extended chromatin. This difference in DNA-protein interaction in extended and condensed chromatin may be related to the functional difference which characterizes these fractions, and might be one of the factors underlying the production of bands on metaphase chromosomes.  相似文献   

6.
Immunospecificity of nonhistone proteins in chromatin   总被引:2,自引:0,他引:2  
  相似文献   

7.
8.
Summary Non-histone chromatin proteins prepared from the livers of estrogen-treated and nontreated male chickens were compared by reverse-phase high performance liquid chromatography (RP-HPLC), followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that the hormone-treated male liver chromatin contained a specific protein corresponding to the vitellogenin-specific protein previously purified from the liver of egg-laying hens (Nakayama 1985). The chicken protein, purified further by gel-filtration high performance liquid chromatography (GF-HPLC), showed specific binding activity to DNA fragments carrying a part of the vitellogenin gene. On the basis of similarities in the elution patterns from GF-HPLC and RP-HPLC as well as in the mobility on SDS-PAGE, we concluded that this hormone-induced protein in the male chicken liver was identical to the vitellogenin-specific protein identified in the hen liver, and assumed it to be a specific regulatory protein for the vitellogenin gene expression. The amino acid composition of this chicken protein has been determined.  相似文献   

9.
10.
1. Changes in circular dichroism (CD) spectra and thermal melting profiles of guinea pigliver DNA reassociated with histones and/or nonhistone proteins from the cerebral of liver chromatin are described. 2. In the DNA-histone complex, positive ellipiticity in the CD spectrum at 260-300 nm is progressively lod by a red-shift of the crossover point at around 260 nm. DNA in this complex is thermally stabilised to a considerable extent, but not to such a full extent as is shown with DNA in native chromatin. 3. DNA-nonhistone complex in 0.14 M NaCl is, in contrast to DNA-histone complex, not precipitable by centrifugation at 20 000 X g. DNA in this complex shows only a slight reduction in ellipticity at 260-300 nm, and a very weak thermal stabilisation. 4. Characteristics in the CD spectrum of the native chromatin are most satisfactorily reproduced in the DNA-histone-nonhistone complex. These include a large decrease in ellipticity at 260-300 nm, a red-shift of the crossover point at around 260 nm, and a slight negative band at around 305 nm. Also, DNA in this complex is thermally stabilised to the extent comparable with DNA in the native chromatin. 5. Addition of nonhistone proteins to the preformed DNA-histone complex in 3 M urea renders a half of the complex, named DNA-histone(-nonhistone), unprecipitable upon centrifugation at 20 000 X g in 0.14 M NaCl. CD spectrum and thermal melting profile of the precipitable DNA-histone(-nonhistone) complex are similar to those of the DNA-histone-nonhistone complex, while in the unprecipitable DNA-histone(-nonhistone) comples, the ellipticity at 260-300 nm is significantly elevated and the highest melting transition (at 80 degrees C) is lacking. 6. The CD spectrum of native cerebral chromatin closely resembles that of unprecipitable DNA-histone(-nonhistone) complex, while in liver chromatin, the spec.trum is an intermediate between those of the unprecipitable and pn of chromatin by nonhistone proteins. Cerebral nonhistone proteins bind to DNA and to the DNA-histone complex more extensively than liver nonhistone proteins. 7. It is concluded that, although the basic conformation of DNA in native chromatin is determined largely by histones, nonhistone proteins also play an individual role. There is also an indication that nonhistone proteins exert an organ-specific modification of chromatin superstructure.  相似文献   

11.
A cytochemical method of chromatin study by means of nuclear staining with ethidium (bromide) is described. Dependence of stain binding by chromatin on ethidium concentration, ionic composition and buffer pH value has been analyzed. It is suggested that cells be stained in 2.10(-5) M solution of ethidium in 0.1 M tris-HCl buffer at pH 8.0 during 30 min. The fluorescence of nuclei stained with ethidium under conditions described is shown to reflect changes in physico-chemical properties of chromatin taking place in the course of its chemical modification and physiological activation in regenerating liver. The use of ethidium for chromatin cytochemistry allows to study chromatin properties in wide ranges of pH. Some other advantages of the method suggested over the commonly used method of acridine orange staining are discussed.  相似文献   

12.
13.
14.
Chemical cross-linking with dithiobis(succinimidyl propionate) has been used to investigate the relative disposition of neighbouring H5 (H1) molecules in chicken erythrocyte chromatin in the extended (nucleosome filament) and condensed (300 A filament) states; in this chromatin H5 and H1 are interspersed along the nucleosome filament, rather than segregated into blocks, as shown by the nature of the cross-linked dimers and their relative amounts. Detailed analysis of the cross-linked H5 homopolymers from extended chromatin and condensed nuclear chromatin indicates which domains of H5 are in contact (or close proximity) in the two states. Two results suggest a polar, head-to-tail arrangement of H5 molecules along the nucleosome filament. This arrangement persists when chromatin adopts higher-order structure but in the folded state neighbouring basic C-terminal domains, in particular, are more closely juxtaposed than they are in extended chromatin.  相似文献   

15.
32P-labelled chromatin proteins from rat liver and ventral prostate were fractionated according to the procedure designed to enrich high-mobility-group (HMG) nonhistone proteins. This fraction, however, reproducibly demonstrated small amounts of apparently basic nonhistone proteins other than HMG nonhistone proteins. These proteins appeared to be tissue specific and were highly labelled with 32P. The 32P-labelled phosphoproteins were soluble in trichloroacetic or perchloric acid, migrated in acid-urea polyacrylamide gels, and demonstrated pI values ranging from 6.8 to 7.5. The HMG proteins 1 and 2 showed no incorporation of radioactivity under these experimental conditions.  相似文献   

16.
17.
18.
The effect of chicken erythrocyte High Mobility Group protein 1 (HMG-1) on the enzymatic hydrolysis of purified double-stranded and single-stranded bacteriophage lambda DNA was studied. HMG-1 was found to inhibit the digestion of single- and double-stranded DNA by S1 nuclease and DNase I, respectively. HMG-I increased the rate of hydrolysis of double-stranded DNA by micrococcal nuclease, particularly at low HMG-1/DNA ratios, and had little effect on the hydrolysis of single-stranded DNA by micrococcal nucleases, even at high HMG-1 DNA ratios. We also present a semi-quantitative estimate that HMG-1 and HMG-2 occur in chromatin from rapidly dividing, cultured rat hepatoma cells at about 8 times the level that they occur in adult rat liver chromatin.  相似文献   

19.
Difficulties of various methods of isolation of DNA-free non-histone proteins (NHP) from different animal tissues and tumor cells are discussed. As a result, a simple and effective way of obtaining clean preparations of NHP possessing phosphoproteinkinase and immunological activity has been described.  相似文献   

20.
Budding yeast silent chromatin, or heterochromatin, is composed of histones and the Sir2, Sir3, and Sir4 proteins. Their assembly into silent chromatin is believed to require the deacetylation of histones by the NAD-dependent deacetylase Sir2 and the subsequent interaction of Sir3 and Sir4 with these hypoacetylated regions of chromatin. Here we explore the role of interactions among the Sir proteins in the assembly of the SIR complex and the formation of silent chromatin. We show that significant fractions of Sir2, Sir3, and Sir4 are associated together in a stable complex. When the assembly of Sir3 into this complex is disrupted by a specific mutation on the surface of the C-terminal coiled-coil domain of Sir4, Sir3 is no longer recruited to chromatin and silencing is disrupted. Because in sir4 mutant cells the association of Sir3 with chromatin is greatly reduced despite the partial Sir2-dependent deacetylation of histones near silencers, we conclude that histone deacetylation is not sufficient for the full recruitment of silencing proteins to chromatin and that Sir-Sir interactions are essential for the assembly of heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号