首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tomales Bay, a graben structure along the San Andreas Fault, was selected for modeling ecosystem nutrient dynamics because of its linear, one-dimensional morphology and relatively pristine state. Groundwater is a potentially important term in the nutrient budget. The geologic complexities created by the San Anreas Fault, however, complicate the hydrogeology and require the area to be subdivided into three regions: granite to the west, Franciscan Formation to the east, and alluvial fill in the trough. Nutrient concentrations in the groundwater were determined through extensive well sampling; groundwater discharge was estimated using both Darcy's Law calculations and a soil moisture budget. Results indicate that groundwater discharge is of the same order of magnitude as summer streamflow into the Bay, while being significantly less than other freshwater inputs in winter. Dissolved nutrient (phosphate, nitrate + nitrite, ammonium, silica and DIC) concentrations in groundwater were consistently higher (by as much as an order of magnitude) than in surface water discharges. During the summer months, groundwater flow contributes about as much nutrient load to the bay as does streamflow. During the winter, the groundwater contribution to nutrient loading is about 20% of the streamflow contribution. Our findings indicate that groundwater is a significant component of terrestrial nutrient and freshwater loading to Tomales Bay, particularly so during the summer months. However, neither groundwater nor streamflow nutrient fluxes are large in comparison to the mixing flux at the bay mouth or the flux of N2 gas across the air-water interface.  相似文献   

2.
The regional responses of winter shorebird populations in the nearly 3,000 ha estuary of Tomales Bay, California, to the restoration of 223 ha of historic tidal wetlands were evaluated for 27 years: 19 years prior to tidal reintroduction and 8 years after tidal reintroduction. We used interrupted time series analyses to measure the spatial extent of the restoration effect and to model the magnitude and length of time associated with the gradual, restoration‐induced growth of winter shorebird populations in the bay. Expanded, regional benefits of the restoration were revealed by consistent patterns of winter shorebird population growth. Eight years after tidal reintroduction, overall shorebird abundances in southern Tomales Bay nearly tripled in response to the restoration. Substantial winter population growth by most species in southern Tomales Bay was evident within 3 years after tidal reintroduction, and maximum responses to the restoration were estimated to be predominantly achieved within 8 years. In contrast to strong effects of tidal marsh restoration on winter shorebird populations in southern Tomales Bay, no significant overall responses were exhibited by shorebirds in the northern portion of the bay, although marginal evidence of expanded effects on a few species in northern Tomales Bay were suggested. The results illustrate the importance of accounting for restoration effects beyond the spatial and temporal boundaries of the restored habitat, to consider both the potentially expanded benefits and the spatial limits of those benefits to regional wildlife populations.  相似文献   

3.
In 1980 a long-term study of the fishery resources of the San Francisco Bay estuary was initiated in an effort to delineate the importance of freshwater inflow to fish and invertebrate abundance and distribution in the bay. An analysis of the trawl data collected between January 1980 and December 1982 illustrates the influence of the timing and magnitude of freshwater inflows on fish fistribution and abundance in this estuary from the perspective of monthly, seasonal and annual time scales. Normally found in the delta, Suisun Bay and San Pablo Bay during periods of increased salinity, pelagic species moved downstream after the two peak flows studied, while demersal species usually found in Central San Francisco Bay moved upstream. Such upstream movements may be due in part to transport by strong density-driven currents.Timing and magnitude of monthly catches of some species varied on a seasonal cycle coincident with variations of freshwater inflow. Most species, especially the marine species, showed no consistent cycle of monthly catches. In the wet years of 1980 and 1982 the distributions of freshwater, estuarine and anadromous species were extended downstream into San Pablo, Central and South San Francisco Bays and some marine species, including the flatfish, were more abundant in the upstream areas. In the dry year of 1981 when bay salinities were higher, few marine species extended their distributions upstream into San Pablo and Suisun Bays. Jacksmelt was the only fish of the 15 most abundant species with its peak abundance in 1981. Most marine species were more abundant in the San Francisco Bay estuary in the wet years.  相似文献   

4.
Conceptual models for tidal period and low-frequency variations in sea level, currents, and mixing processes in the northern and southern reaches of San Francisco Bay describe the contrasting characteristics and dissimilar processes and rates in these embayments: The northern reach is a partially mixed estuary whereas the southern reach (South Bay) is a tidally oscillating lagoon with density-driven exchanges with the northern reach.The mixed semidiurnal tides are mixtures of progressive and standing waves. The relatively simple oscillations in South Bay are nearly standing waves, with energy propagating down the channels and dispersing into the broad shoal areas. The tides of the northern reach have the general properties of a progressive wave but are altered at the constriction of the embayments and gradually change in an upstream direction to a mixture of progressive and standing waves. The spring and neap variations of the tides are pronounced and cause fortnightly varying tidal currents that affect mixing and salinity stratification in the water column.Wind stress on the water surface, freshwater inflow, and tidal currents interacting with the complex bay configuration are the major local forcing mechanisms creating low-frequency variations in sea level and currents. These local forcing mechanisms drive the residual flows which, with tidal diffusion, control the water-replacement rates in the estuary. In the northern reach, the longitudinal density gradient drives an estuarine circulation in the channels, and the spatial variation in tidal amplitude creates a tidally-driven residual circulation. In contrast, South Bay exhibits a balance between wind-driven circulation and tidally-driven residual circulation for most of the year. During winter, however, there can be sufficient density variations to drive multilayer (2 to 3) flows in the channel of South Bay.Mixing models (that include both diffusive and dispersive processes) are based on time scales associated with salt variations at the boundaries and those associated with the local forcing mechanisms, while the spatial scales of variations are dependent upon the configuration of the embayments. In the northern reach, where the estuarine circulation is strong, the salt flux is carried by the mean advection of the mean salt field. Where large salinity gradients are present, the tidal correlation part of the salt flux is of the same order as the advective part. Our knowledge of mixing and exchange rates in South Bay is poor. As this embayment is nearly isohaline, the salt flux is dominated entirely by the mean advection of the mean salt field. During and after peaks in river discharge, water mixing becomes more dynamic, with a strong density-driven current creating a net exchange of both water mass and salt. These exchanges are stronger during neap tides.Residence times of the water masses vary seasonally and differ between reaches. In the northern reach, residence times are on the order of days for high winter river discharge and of months for summer periods. The residence times for South Bay are fairly long (on the order of several months) during summer, and typically shorter (less than a month) during winter when density-driven exchanges occur.  相似文献   

5.
Sulfate reduction and sediment metabolism in Tomales Bay,California   总被引:3,自引:1,他引:2  
Sulfate reduction rates (SRR) in subtidal sediments of Tomales Bay, California, were variable by sediment type, season and depth. Higher rates were measured in near-surface muds during summer (up to 45 nmol cm-3 h-1), with lower rates in sandy sediments, in winter and deeper in the sediment. Calculations of annual, average SRR throughout the upper 20 cm of muddy subtidal sediments (about 30 mmol S m-2 d-1) were much larger than previously reported net estimates of SRR derived from both benthic alkalinity flux measurements and bay wide, budget stoichiometry (3.5 and 2.6 mmol m-2 d-1, respectively), indicating that most reduced sulfur in these upper, well-mixed sediments is re-oxidized. A portion of the net alkalinity flux across the sediment surface may be derived from sulfate reduction in deeper sediments, estimated from sulfate depletion profiles at 1.5 mmol m-2 d-1. A small net flux of CO2 measured in benthic chambers despite a large SRR suggests that sediment sinks for CO2 must also exist (e.g., benthic microalgae).  相似文献   

6.
This review of the preceding papers suggests that temporal variability in San Francisco Bay can be characterized by four time scales (hours, days-weeks, months, years) and associated with at least four mechanisms (variations in freshwater inflow, tides, wind, and exchange with coastal waters). The best understood component of temporal variability is the annual cycle, which is most obviously influenced by seasonal variations in freshwater inflow. The winter season of high river discharge is characterized by: large-scale redistribution of the salinity field (e.g. the upper estuary becomes a riverine system); enhanced density stratification and gravitational circulation with shortened residence times in the bay; decreased tissue concentrations of some contaminants (e.g. copper) in resident bivalves; increased estuarine inputs of river-borne materials such as dissolved inorganic nutrients (N, P, Si), suspended sediments, and humic materials; radical redistributions of pelagic organisms such as copepods and fish; low phutoplankton biomass and primary productivity in the upper estuary; and elimination of freshwater-intolerant species of macroalgae and benthic infauna from the upper estuary. Other mechanisms modulate this river-driven annual cycle: (1) wind speed is highly seasonal (strongest in summer) and causes seasonal variations in atmosphere-water column exchange of dissolved gases, resuspension, and the texture of surficial sediments; (2) seasonal variations in the coastal ocean (e.g. the spring-summer upwelling season) influence species composition of plankton and nutrient concentrations that are advected into the bay; and (3) the annual temperature cycle influences a few selected features (e.g. production and hatching of copepod resting eggs). Much of the interannual variability in San Francisco Bay is also correlated with freshwater inflow: wet years with persistently high river discharge are characterized by persistent winter-type conditions.Mechanisms of short-term variability are not as well understood, although some responses to storm events (pulses in residual currents from wind forcing, erosion of surficial sediments by wind waves, redistribution of fish populations) and the neap-spring tidal cycle (enhanced salinity stratification, gravitational circulation, and phytoplankton biomass during neap tides) have been quantified. In addition to these somewhat predictable features of variability are (1) largely unexplained episodic events (e.g. anomalous blooms of drift macroalgae), and (2) long-term trends directly attributable to human activities (e.g. introduction of exotic species that become permanent members of the biota).  相似文献   

7.
Shrimp are an important component of the San Francisco Bay biota, both as predators on benthic fauna, and as a food source for predatory fish. Of three common species in the bay, Crangon franciscorum is the most abundant. The bay is predominantly a nursery area for maturing shrimp of this species. During the main reproductive period in the early spring, ovigerous females and planktonic larvae are in most years centered outside the bay in the nearshore ocean, although both are also present in the bay. Juveniles move into both the southern reach and the northern reach shortly after settling, and landward-flowing bottom currents are possibly instrumental in this migration. The seasonal cycle of shrimp abundance in the bay, dominated by this spring immigration of newly settled juveniles, is characterized by a progressive migration of the growing shrimp up the estuary coincident with upstream penetration of higher salinity water during summer. Differences in abundance and distribution between the years 1980, 1981, and 1982 suggest that the level of river discharge and accompanying salinity regime are important controlling factors in the distribution, recruitment levels, and subsequent survival and growth of C. franciscorum in the San Francisco Bay.  相似文献   

8.
A survey of the parasites of Pacific herring (Clupea harengus pallasi) off northern California identified 1 species of Acanthocephala, 1 species of Cestoda, 2 species of Copepoda, 1 species and 1 family of Digenea, 3 species of Nematoda, and 3 species of Protozoa. From this survey, Lacistorhynchus dollfusi (Cestoda), Parahemiurus merus (Digenea), and Anisakis simplex, Contracaecum sp., Hysterothylacium sp. (Nematoda) were selected as potential tags. Herring were collected in Tomales, San Francisco, and Monterey bays for the following 9 yr and examined for these select parasites. The results suggest that these parasites can be used to distinguish the spawning stocks of San Francisco and Tomales bays. The distribution of the definitive hosts of the respective parasites suggests that the Tomales Bay fish are offshore during the nonbreeding season and the San Francisco Bay fish onshore. The similarity in parasitism between San Francisco Bay and the nonspawning population in Monterey Bay suggests that these 2 populations represent a single stock.  相似文献   

9.
Nearly two decades of seasonal dissolved inorganic nutrient-salinity distributions in northern San Francisco Bay estuary (1960–1980) illustrate interannual variations in effects of river flow (a nutrient source) and phytoplankton productivity (a nutrient sink). During winter, nutrient sources dominate the nutrient-salinity distribution patterns (nutrients are at or exceed conservative mixing concentrations). During summer, however, the sources and sinks are in close competition. In summers of wet years, the effects of increased river flow often dominate the nutrient distributions (nutrients are at or less than conservative mixing concentrations), whereas in summers of dry years, phytoplankton productivity dominates (the very dry years 1976–1977 were an exception for reasons not yet clearly known). Such source/sink effects also vary with chemical species. During summer the control of phytoplankton on nutrient distributions is apparently strongest for ammonium, less so for nitrate and silica, and is the least for phosphate. Furthermore, the strength of the silica sink (diatom productivity) is at a maximum at intermediate river flows. This relation, which is in agreement with other studies based on phytoplankton abundance and enumeration, is significant to the extent that diatoms are an important food source for herbivores.The balance or lack of balance between nutrient sources and sinks varies from one estuary to another just as it can from one year to another within the same estuary. At one extreme, in some estuaries river flow dominates the estuarine dissolved inorganic nutrient distributions throughout most of the year. At the other extreme, phytoplankton productivity dominates. In northern San Francisco Bay, for example, the phytoplankton nutrient sink is not as strong as in less turbid estuaries. In this estuary, however, river effects, which produce or are associated with near-conservative nutrient distributions, are strong even at flows less than mean-annual flow. Thus, northern San Francisco Bay appears to be an estuary in between the two extremes and is shifted closer to one extreme or the other depending on interannual variations in river flow.  相似文献   

10.
We examined the importance of nitrogen inputs from groundwater and runoff in a small coastal marine cove on Cape Cod, MA, USA. We evaluated groundwater inputs by three different methods: a water budget, assuming discharge equals recharge; direct measurements of discharge using bell jars; and a budget of water and salt at the mouth of the Cove over several tidal cycles. The lowest estimates were obtained by using a water budget and the highest estimates were obtained using a budget of water and salt at the Cove mouth. Overall there was more than a five fold difference in the freshwater inputs calculated by using these methods. Nitrogen in groundwater appears to be largely derived from on site septic systems. Average nitrate concentrations were highest in the region where building density was greatest. Nitrate in groundwater appeared to behave conservatively in sandy sediments where groundwater flow rates were high (> 11/m2/h), indicating that denitrification was not substantially reducing external nitrogen loading to the Cove. Nitrogen inputs from groundwater were approximately 300 mmol-N/m3/y of Cove water. Road runoff contributed an additional 60 mmol/m3/y. Total nitrogen inputs from groundwater and road runoff to this cove were similar in magnitude to river dominated estuaries in urbanized areas in the United States.  相似文献   

11.
We examined the importance of nitrogen inputs from groundwater and runoff in a small coastal marine cove on Cape Cod, MA, USA. We evaluated groundwater inputs by three different methods: a water budget, assuming discharge equals recharge; direct measurements of discharge using bell jars; and a budget of water and salt at the mouth of the Cove over several tidal cycles. The lowest estimates were obtained by using a water budget and the highest estimates were obtained using a budget of water and salt at the Cove mouth. Overall there was more than a five fold difference in the freshwater inputs calculated by using these methods. Nitrogen in groundwater appears to be largely derived from on site septic systems. Average nitrate concentrations were highest in the region where building density was greatest. Nitrate in groundwater appeared to behave conservatively in sandy sediments where groundwater flow rates were high (> 11/m2/h), indicating that denitrification was not substantially reducing external nitrogen loading to the Cove. Nitrogen inputs from groundwater were approximately 300 mmol-N/m3/y of Cove water. Road runoff contributed an additional 60 mmol/m3/y. Total nitrogen inputs from groundwater and road runoff to this cove were similar in magnitude to river dominated estuaries in urbanized areas in the United States.  相似文献   

12.
Aim Historical information about source populations of invasive species is often limited; therefore, genetic analyses are used. We compared inference about source populations from historical and genetic data for the oyster‐associated clam, Gemma gemma that invaded California from the USA Atlantic coast. Location Mid‐Atlantic (North Carolina, Maryland), Northeastern (New Jersey, New York, Massachusetts) and the California coasts (Elkhorn Slough, San Francisco Bay, Bolinas Lagoon, Tomales Bay, Bodega Harbor). Methods The documented history of transplantation of Eastern oysters to California was reviewed. Cytochrome c oxidase subunit I (COI) sequences from recent and archived clams were examined in a haplotype network. We used AMOVA to detect geographic genetic structure and a permutation test for significant reductions in diversity. Results Chesapeake Bay oysters were transplanted to New York prior to shipment to San Francisco Bay and from there to peripheral bays. Gemma in the Northeastern and Mid‐Atlantic regions were genetically differentiated. In California, populations in Bodega Harbor and Tomales Bay were genetically similar to those in the Mid‐Atlantic area while clams in San Francisco Bay, Elkhorn Slough and Bolinas Lagoon resembled populations in the Northeastern region. In California, genetic variation was not highest in San Francisco Bay despite greater magnitude of oyster plantings. Haplotypes varied over time in native and introduced populations. Main Conclusions Historical records and inferences from genetics agree that both Northeastern and Mid‐Atlantic regions were sources for Gemma in California. Only complex genetic hypotheses reconcile the strong segregation of haplotypes in California to the historical evidence of mixing in their proximate source (New York). These hypotheses include sorting of mixtures of haplotypes or selection in non‐native areas. Haplotype turnover in San Francisco and Massachusetts samples over time suggests that the sorting hypothesis is plausible. We suggest, however, that Gemma was introduced independently and recently to Tomales Bay and Bodega Harbor.  相似文献   

13.
Previous studies have used tree-ring chronologies from several species to develop reconstructions of precipitation, temperature, streamflow and glacier mass balance for sites in Banff National Park, Alberta. This study examines the variability in a >300-year summer streamflow reconstruction for the Bow River at Banff in conjunction with changes in the major contributors to streamflow (glacier melt, winter and summer pecipitation). Reconstructed winter mass balance for Peyto Glacier is used as a surrogate for winter precipitation and April–August precipitation is reconstructed for Banff. Streamflow variability correlates most highly with winter precipitation and periods of high flow follow above average snowfall in the previous winter (high winter balance) and in some cases also with above normal summer precipitation. A clear response to changes in summer mass balance at Peyto Glacier (i.e. summer glacier melting) cannot be identified in this summer discharge record. Problems developing physically realistic flow reconstructions for snowmelt dominated rivers from summer sensitive tree-ring chronologies are also discussed.  相似文献   

14.
We tested the hypothesis that temperature, salinity, and dissolved oxygen affect elasmobranch distribution and abundance in Tomales Bay, California, with monthly longline samples over a 20 month period. We used a Poisson regression under generalized least squares and found that temperature and salinity were the most important factors determining the distribution and abundance of the three most common elasmobranch species, bat ray, Myliobatis californica, leopard shark, Triakis semifasciata, and brown smoothhound shark, Mustelis henlei. Females of all three species were more abundant than males throughout the Bay, and were most abundant in the warmer, more saline inner bay. All three species apparently left Tomales Bay in late fall as water temperatures in the bay decreased to <10–12° C, and returned in early spring after temperatures increased to > 10° C. Three of 257 bat rays tagged in Tomales Bay were recaptured, all within 1km of their tagging location despite having been free for up to 583d.  相似文献   

15.
Streamflow-related variability in nutrient flux represents an important source of uncertainty in managing nutrient inputs to coastal ecosystems. Quantification of flux variability is of particular interest to coastal resource managers in adopting effective nutrient-reduction goals and monitoring progress towards these goals. We used historical records of streamflow and water-quality measurements for 104 river monitoring stations in an analysis of variability in annual and seasonal flux of nitrate to the Atlantic coastal zone. We present two measures of temporal flux variability: the coefficient of variation (CV) and the exceedence probability (EP) of 1.5 times the median flux. The magnitude of flux variations spans a very wide range and depends importantly upon the season of year and the climatic and land-use characteristics of the tributary watersheds. Year-to-year variations (CV) in annual mean flux range over two orders of magnitude, from 3–200% of the long-term mean flux, although variations more typically range from 20–40% of the long-term mean. The annual probability of exceeding the long-term median flux by more than 50% (EP) is less than 0.10 in most rivers, but is between 0.10 and 0.35 in 40% of the rivers. Year-to-year variability in seasonal mean flux commonly exceeds that in annual flux by a factor of 1.5 to 4. In western Gulf of Mexico coastal rivers, the year-to-year variablity in the seasonal mean flux is larger than in other regions, and is of a similar magnitude in all seasons. By contrast, in Atlantic coastal rivers, the winter and spring seasons, which account for about 70% of the annual flux, display the smallest relative variability in seasonal mean flux. We quantify the elasticity of nutrient flux to hypothetical changes in Streamflow (i.e., the percent increase in flux per percentage increase in mean discharge) to allow the approximation of flux variability from streamflow records and the estimation of the effects of future climatically-induced changes in Streamflow on nutrient flux. Flux elasticities are less than unity (median = 0.93%) at most stations, but vary widely from 0.05% to 1.59%. Elasticities above unity occur most frequently in the largest rivers and in rivers draining the arid portions of the western Gulf of Mexico Basin. Historical flux variability and elasticity generally increase with the extent of arid conditions and the quantity of nonurban land use in the watershed. We extend the analysis of flux variability to examine several case studies of highly unusual meteorological events capable of significantly elevating nitrate flux and degrading estuarine ecology.  相似文献   

16.
San Francisco Bay, the largest bay on the California coast, is a broad, shallow, turbid estuary comprising two geographically and hydrologically distinct subestuaries: the northern reach lying between the connection to the Pacific Ocean at the Golden Gate and the confluence of the Sacramento-San Joaquin River system, and the southern reach (herein called South Bay) between the Golden Gate and the southern terminus of the bay. The northern reach is a partially mixed estuary dominated by seasonally varying river inflow, and the South Bay is a tidally oscillating lagoon-type estuary. Freshwater inflows, highest during winter, generate strong estuarine circulation and largely determine water residence times. They also bring large volumes of dissolved and particulate materials to the estuary. Tidal currents, generated by mixed semidiurnal and diurnal tides, mix the water column and, together with river inflow and basin geometry, determine circulation patterns. Winds, which are strongest during summer and during winter storms, exert stress on the bay's water surface, thereby creating large waves that resuspend sediment from the shallow bay bottom and, together with the tidal currents, contribute markedly to the transport of water masses throughout the shallow estuary.  相似文献   

17.
Pacific Crassostrea gigas and eastern C. virginica oysters were examined between June 2002 and April 2003 from 8 locations along the east, west and south USA coasts for oyster herpes virus (OsHV) infections using the A primer set in a previously developed PCR test. Only surviving Pacific oysters from a mortality event in Tomales Bay, California, USA, where annual losses of oysters have occurred each summer since 1993, were infected with a herpes-like virus in 2002. PCR examination using template amounts of both 50 and 500 ng were essential for OsHV detection. Sequence analysis indicated that the Tomales Bay OsHV was similar to that identified in France with the exception of a single base pair substitution in a 917 bp fragment of the viral genome. However, unlike the French OsHV-1, the Tomales Bay OsHV did not amplify with the primer pair of a second OsHV-1 PCR assay, suggesting that further characterization of these viruses is warranted. No evidence of Cowdry type A viral infections characteristic of herpes virus infections or other pathogens were observed in OsHV-infected oysters. Hemocytosis, diapedesis and hemocyte degeneration characterized by nuclear pycnosis and fragmentation were observed in infected oysters, which is consistent with previous observations of OsHV infections in France. Together these data suggest that OsHV may be associated with the annual summer Pacific oyster seed mortality observed in Tomales Bay, but establishment of a causal relationship warrants further investigation.  相似文献   

18.
王春忠  陈晓  郑建峰 《生态科学》2011,30(6):581-585
根据2007年3月至12月福建省兴化湾海域的水质监测结果,重点分析了该海域溶解无机氮(DIN)、溶解无机磷(DIP)的分布特征及其影响因素,并采用有机污染指数和富营养化指数对兴化湾海域的富营化水平进行了评价。结果表明:兴化湾海域富营养化主要污染物是DIN、DIP,其含量主要受径流排放和海洋浮游植物生长等因素的影响。春夏季节浮游植物生长繁殖旺盛,但雨水增多,最终导致了DIP、DIN含量的升高。秋季水温下降,浮游植物生长繁殖逐渐减弱,DIP、DIN的含量也逐渐升高。兴化湾富营养化水平加重,2007年的富营养化指数是2000年的5.7倍,主要体现在DIN、DIP等指标的升高。  相似文献   

19.
A survey of the phytoplankton and nutrient levels in Goat Island Bay, northern New Zealand was carried out in 1981–82 and the data compared with an earlier survey in 1966–69. The contribution of nutrients from the inflowing creek was also measured. The only significant change was a doubling of the dissolved nitrate levels in the sea, which appeared to be related to increased nitrate levels in the freshwater creek. It is suggested that the increase is due to an increase in the farming and recreational use of the catchment area. The standing crops of phytoplankton in the bay showed no correlation with nutrient levels, but there were significant correlations with the radiation received.  相似文献   

20.
The phylogenetic compositions of bacterioplankton assemblages from San Francisco Bay and Tomales Bay, Calif., differed substantially when analyzed by PCR-denaturing gradient gel electrophoresis; these differences are consistent with the results of previous studies demonstrating differences in their metabolic capabilities. PCR-denaturing gradient gel electrophoresis analysis of complex microbial assemblages was sensitive and reliable, and the results were reproducible as shown by experiments with constructed and naturally occurring assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号