首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
1,8-cineole is a volatile growth inhibitor produced bySalvia species. We examined the effect of this allelopathic compound on the growth of other plants usingBrassica campestris as the test plant. Cineole inhibited germination and growth ofB. campestris in a dosedependent manner. WhenB. campestris was grown for 5 days with various concentrations of cineole, the length of the roots was found to be shorter as the concentration of cineole increased, whereas the length of the hypocotyl remained constant up to 400 μM cineole, indicating that cineole specifically inhibited growth of the root. The mitotic index in the root apical meristem of 3-day-old seedlings decreased from 5.6% to 1.6% when exposed to 400 μM cineole, showing that cineole inhibits the proliferation of root cells. We then examined the effect of cineole on DNA synthesis by indirect immunofluorescence microscopy using antibody raised against 5-bromo-2′-deoxyuridine (BrdU, an analogue of thymidine) in thin sections of samples embedded in Technovit 7100 resin. The results clearly demonstrated that cineole inhibits DNA synthesis in both cell nuclei and organelles in root apical meristem, suggesting that cineole may interfere with the growth of other plant species by inhibiting DNA synthesis in the root apical meristem.  相似文献   

2.
Carl N. McDaniel 《Planta》1980,148(5):462-467
The terminal, apical shoot meristem ofN. tabacum cv. Wisconsin 38 normally differentiates into a flower after producing 30 to 40 nodes. The influence of leaves and roots on the regulation of flowering was evaluated by counting the number of nodes produced after removal of leaves or the induction of adventitious roots. Leaf removal has no effect on the number of nodes produced before flower formation. Root induction significantly increases the number of nodes produced before flower formation. The plant behaves as if it were measuring the number of nodes between the meristem and the roots as a means of regulating meristem conversion from vegetative to floral differentiation.  相似文献   

3.
Excised shoot apices of maize (Zea mays L.), comprising the apical meristem and one or two leaf primordia, have been cultured and can form rooted plantlets. The plantlets, derived from meristems that had previously formed 7–10 nodes, develop into mature, morphologically normal plants with as many nodes as seed-grown plants. These culture-derived plants exhibited the normal pattern of development, with regard to the progression of leaf lengths along the plant and position of axillary buds and aar shoots. Isolation of the meristem from previously formed nodes reinitiates the pattern and number of nodes formed in the new plant. Thus, cells of the meristem of a maize plant at the seedling stage are not determined to form a limited number of nodes.  相似文献   

4.
Dutt M  Li ZT  Dhekney SA  Gray DJ 《Plant cell reports》2007,26(12):2101-2110
Shoot apical meristem explants of Vitis vinifera “Thompson Seedless” were used for Agrobacterium-mediated genetic transformation. It was determined that the meristems had to be subjected to a dark growth phase then wounded to obtain transgenic plants. Morphological and histological studies illustrated the role of wounding to expose apical meristem cells for transformation. A bifunctional egfp/nptII fusion gene was used to select kanamycin resistant plants that expressed green fluorescent protein (GFP). Kanamycin at a concentration of 16 mg L−1 in selection medium resulted in recovery of non-chimeric transgenic plants that uniformly expressed GFP, whereas 8 mg L−1 kanamycin allowed non-transgenic and/or chimeric plants to develop. Polymerase chain reaction (PCR) and Southern blot analyses confirmed the presence of transgenes and their stable integration into the genome of regenerated plants. Up to 1% of shoot tips produced stable transgenic cultures within 6 weeks of treatment, resulting in a total of 18 independent lines.  相似文献   

5.
Cell aggregates with root primordia were formed in root primordia culture (RPC) of Solanum lycopersicoides grown in modified liquid MS medium containing 15 mg/l NAA. After transfer to liquid medium containing 1 mg/l 2,4-D, the aggregates dissociated into single root primordia (RP) which had an organizing root meristem at the apical pole. Oval structures called pseudoembryos were formed from single RP. After passage to liquid MS medium without phyto-hormones and organic compounds (with the exception of sucrose), an apical root meristem developed and the shoot apical meristem was initiated. The pseudoembryos developed into elongated pseudoseedlings which formed plants after transfer to a 1/2MSV medium. The development of pseudoembryos occurred without the callus phase. Moreover, the induction of the shoot meristem occurred without exogenous cytokinins. Received: 30 August 1999 / Revision received: 20 December 1999 / Accepted: 3 January 2000  相似文献   

6.
Summary A rapid micropropagation system was established forHolostemma annulare (Roxb.) K. Schum., (H. ada-kodien R. Br. ex Schult; Asclepiadaceae), a rare medicinal plant. Shoot tips (0.5–0.8 cm) and terminal and basal nodes (1.0–1.5 cm) harvested from actively growing shoots of conventionally raised plants were cultured on Murashige and Skoog (MS) medium supplemented with various concentrations of 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA). Multiple shoot formation (3.8) was observed in 68% of basal nodes cultured on medium with optimum concentration of 4.43 μM BA and 0.54 μM NAA after 8 wk. Terminal nodes were not suitable for inducing multiple shoots. Irrespective of the orientation (vertical/horizontal), all shoot tip explants responded with a single shoot in all the combinations of plant growth regulators tried. Effects of other cytokinins (kinetin and 2-isopentenyladenine) and auxins [indole-3-acetic acid and indole-3-butyric acid (IBA)] to enhance the regeneration potential of basal nodes were analyzed. Shoots were multiplied by subculture of basal nodes and stumps (the original explant tissue free of shoots, but with remnant axillary, meristem and two or three protruding buds) in a reduced concentration of BA (2.21 μM) and NAA (0.27 μM). Liquid medium for multiplication was found to be ineffective due to a high degree of hyperhydricity. To make the multiplication process cost effective, culture bottles with polypropylene, caps were used for multiplication. The best root induction (75%) and survival (80%) was achieved on 0.5 strength MS medium supplemented with 1.48 μM IBA. Field-established plants had uniform growth habit traits in terms of height of plants and number, length, and weight of the tuberous roots.  相似文献   

7.
An analysis of axillary meristem (axillary bud) localization of radish (Raphanus sativus L. cv. Tetra-I?ówiecka) was undertaken on vernalized (flowering) and unvernalized (vegetative) plants. It has been shown that the localization of these meristems can be different on successive nodes of the same plant and is connected with the development stages of the plants. The axillary meristems can arise on the stem as well as in the leaf axil or on the base of the subtending leaf. The localization of axillary meristems has been discussed in relation to growth directions and growth correlations inside the meristematic region of the shoot apex.  相似文献   

8.
We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2–15 of both elongated and non-elongated intermodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11–15 only elongated internodes but not at nodes 2–10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants ofserpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.  相似文献   

9.
Caulogenic responses of various explant types from 12-month-old plants of Hemidesmus indicus were tested. Second and third visible nodes (0.5 cm) from the apex and root segments (0.5 cm) were the most and least regenerative respectively, with the formation of 9.37 and 2.6 shoots in 4 weeks on half strength MS medium supplemented with 2.22 μM BA and 1.07 μM NAA and 4.44 μM BA and 2.69 μM NAA respectively. Caulogenic ability of the nodes decreased with increasing maturity. Shoot buds initiated upon the young nodes on day 10 developed into 7.2 cm long shoots within 4 weeks thereby making a shoot elongation phase unnecessary. Nodal explants of the in vitro raised shoots subcultured in the same medium produced 9.32 shoots of 7.1 cm length in 3–4 weeks, similar to those of the mature plant-derived nodes. Multiplication through subculture of the nodes up to 25 passages of 4 weeks each was achieved without decline. Shoot cultures were rooted in quarter salt strength MS medium containing 9.8 μM IBA and the rooted plants were hardened for establishment in pots at 96% rate. Four months after establishment, the micropropagated plants were stable and showed uniform morphological and growth characteristic. After 12 months of cultivation in the field, on an average micropropagated plant consisted of 4–5 shoots, 5–8 branches per shoot and increased root biomass (13.5 g) compared to the poor growth (single shoot and 2–3 branches) and root production (4.6 g) values obtained with plants raised from conventional rooted stem cuttings. The concentration of the root specific compound, 2-hydroxy 4-methoxy benzaldehyde per plant was 2–3 fold higher in micropropagated plants though on unit dry root biomass (0.12% per g dry wt) basis it remained the same between two sources of plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The determinate growth of the primary root, its organization and relationship with lateral-root development, and the possible ecological significance of this growth pattern were analyzed in three sympatric species of Cactaceae from the Sonoran Desert, Stenocereus gummosus (Engelm.) Gibson & Horak, S. thurberi (Engelm.) Buxbaum and Ferocactus peninsulae (F.A.C. Weber) Britton & Rose, var. townsendianus (Britton & Rose) N.P. Taylor, stat. nov., Engelm. After seed germination, primary roots of these species commonly grew only for 2–3 d after the start of radicle protrusion (ASRP). This pattern of growth was observed on seedlings growing on filter paper, in vitro under sterile conditions, or in soil. The root-hair zone approached the very tip of the root and meristem exhaustion appeared to be typical in all seedlings of a population in all species. On average, 23 meristematic cells in the epidermal cell file in F. peninsulae were counted during the short steady-state period of growth (12–24 h ASRP). In S. gummosus, the size of the meristem was smaller with the number of epidermal cells in the meristem during the short steady-state growth period (12–36 h ASRP) averaging 13. The dynamics of meristem exhaustion obeyed Ivanov's model of the life span of cells in the meristem that states: if cell division is suppressed, half of the cells present in the meristem at a given time leave the meristem and start elongation during the period equal to the duration of the cell division cycle. It was deduced, on average, three to five cell division cycles in the meristem preceded its exhaustion. The lost meristem integrity can be related to only a few initial cells being found in the radicle. The cessation of meristematic activity in the primary-root apical meristem was directly related to the induction of lateral-root formation. Determinate primary-root growth can be thus viewed as a physiological root-tip decapitation that stops production of a signal inhibiting lateral-root primordia initiation. The time of lateral-root formation in S. gummosus and F. peninsulae was equal to or shorter than in agronomic mezophyte plants. Lateral roots also had determinate growth. The rapidity of root-system development and the ability to stop and to continue growth at any time under unfavorable and favorable conditions suggests the important role of determinate growth in seedling establishment of these Sonoran Desert species. Received: 13 December 1996 / Accepted: 6 January 1997  相似文献   

11.
Summary We report a less genotype-dependent in vitro regeneration system capable of producing multiple shoot clumps and whole plants in four different wheat genotypes. Shool apical meristems from 7-d-old-seedlings produced axillary and adventitious shoots and somatic embryos on media containing N6-benzyladenine (BA) and 2,4-dichlorophenoxyacetic acid (2,4-D). All four genotypes responded positively to shoot multiplication depending upon media composition. Scanning electron microscopies of cultures showed a proliferating budding state that gave rise to adventitious shoots and somatic embryos on further multiplication. The percentage of relative shoot apical meristem multiplication was 80–90%, and the average number of shoot meristems per multiplied shoot was 40–50 in all genotypes. Among different concentrations of phytohormones, 2 and 4 mgl−1 BA (8.8 and 17.7 μM) in combination with 0.5 mg l−1 2,4-D (2.26 μM) gave the best results. Actively multiplying shoot clumps were recovered with high frequency among 3-mo.-old cultures. These shoot clumps regenerated normally and produced fertile plants containing viable seeds. This in vitro system might prove useful for the production of transgenic plants of wheat in a relatively genotype-independent manner.  相似文献   

12.
At Helgoland, in the North Sea, growth of the high sublittoral brown macroalga Dictyota dichotoma (Hudson) Lamoroux was examined in October (the time of tetraspore release) in an outdoor tank by exposing 2-day-old germlings to four solar radiation treatments achieved with different filter materials or an additional artificial light source: photosynthetically active radiation (PAR; 395–700 nm), PAR plus ultraviolet (UV)-A (320–700 nm), full solar spectrum, or solar spectrum plus artificial UV radiation (UVR). Based on length measurements over a period of 3 weeks, the growth rate in germlings strongly decreased in conditions with UVR compared to PAR: by 14% under PAR+UV-A, by 31% under the full solar spectrum and by 65% with additional UVR. Although growth rates of germlings under UVR were reduced mainly in the first week, the plants did not regain the size of the untreated plants even after 9 weeks. Regardless of the exposure, no defects in morphology or anatomy including the exposed apical meristem were detected, except for a reduction in cell division rates perhaps due to additional cost for photoprotective or repair mechanisms. Depending on the actual position of D. dichotoma plants in the natural habitat, individuals in high positions receive substantial amounts of the more harmful UV-B while those lower down might only receive UV-A during part of the day, thus the effect of UV-B on the growth of D. dichotoma will depend on its position in the field. The effects of tidal variation of the light climate and the implications of our results for the zonation of D. dichotoma are discussed. Received in revised form: 6 July 2000 Electronic Publication  相似文献   

13.
Procedures were developed for the in vitro elimination of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), Sugarcane streak mosaic virus (SCSMV), Sugarcane yellow leaf virus (SCYLV) and Fiji disease virus (FDV) from infected sugarcane. In vitro shoot regeneration, elongation and virus elimination through meristem tissue culture originating from both apical and axillary shoots were compared. The average rates of regeneration and elongation from apical meristem tissues were 91 and 66%, respectively, with the virus-free rate among elongated shoots ranging from 61–92%. Mature axillary buds were cultivated in vitro to produce axillary shoots, from which meristem tissues were excised and cultured. These meristem tissues regenerated (77–100%) and elongated (55–88%) in culture medium at approximately the same rate as the apical meristems. The average virus elimination rate was 90% among elongated shoots derived from mature axillary buds. All five viruses can be eliminated by meristem tissue culture from both apical and axillary shoots using a standardized procedure. The overall average efficiency of virus-free plant production was 45 and 58% from apical and axillary shoots, respectively. There were no significant differences for shoot induction or virus elimination when the meristems were harvested from either the apical or the axillary shoots. This is the first report of SrMV or SCSMV elimination from sugarcane, as well as elimination of any mixed virus infections. This new method of harvesting meristems from axillary buds greatly expands the amount of material available for therapeutic treatments and thereby increases the probability of eliminating viruses from infected sugarcane.  相似文献   

14.
The effects of gibberellin (GA) on cold-induced stem elongation and flowering of Japanese radish (Raphanus sativus L.) were investigated using application of GA3 and a GA-biosynthesis inhibitor, uniconazole (UCZ). UCZ very strongly inhibited stem elongation and delayed flowering, and the inhibition and delay were completely reversed by GA3 application. These results suggest that GA is necessary not only in the stem elongation but also in the flowering. When cold treatment (CT) was conducted on the plants whose GA level was lowered by UCZ, GA3 applied after CT completely reversed the delay of flowering. Thus low GA level probably did not retard cold induction. Microscopic observation of apical meristem showed that UCZ delayed flowering by delaying the shift from vegetative to dome-shaped meristem. This result suggested that low GA level delayed floral evocation. Consequently it was suggested that low GA level retarded physiological process involved in long day induction or in floral evocation, resulting in delay of floral evocation.  相似文献   

15.
Populations of the two native vascular plant species on the Antarctic Peninsula have increased over the past 40 years. This increase has been attributed to improved reproductive performance resulting from regional warming and increased growing season length. However, little is known of the influence that vascular plants have on the performance of neighboring plants in developing and well-established communities. We compared the aboveground growth and reproduction of Deschampsia antarctica plants growing alone or in close proximity to neighboring plants (D. antarctica, Colobanthus quitensis, or mosses) at a young, recently colonized and an older, well-developed plant community on the Antarctic Peninsula to assess whether neighboring plants had a positive or negative effect on D. antarctica performance, and whether these effects varied from young to old communities. In both communities, tillers on D. antarctica plants near neighbors produced 48–89% fewer leaves and 49–93% fewer tillers than those on D. antarctica plants growing alone. These tillers also had relative growth rates that were 25–66% lower- and tiller-size indices that were 42–87% less than those on plants growing alone. In addition, the biomass of tillers on plants growing near neighbors was 40–91% lower than those on plants growing alone. Leaf and tiller production was generally higher in the older, more developed community than in the younger community. Our findings illustrate that vegetative growth of D. antarctica is reduced when growing in close proximity to neighboring plants, suggesting that negative plant interactions are an important constraint at our field sites.  相似文献   

16.
Rice (Oryza sativa ssp. indica) is an important economic crop in many countries. Although a variety of conventional methods have been developed to improve this plant, manipulation by genetic engineering is still complicated. We have established a system of multiple shoot regeneration from rice shoot apical meristem. By use of MS medium containing 4 mg L−1 thidiazuron (TDZ) multiple shoots were successfully developed directly from the meristem without an intervening callus stage. All rice cultivars tested responded well on the medium and regenerated to plantlets that were readily transferred to soil within 5–8 weeks. The tissue culture system was suitable for Agrobacterium-mediated transformation and different factors affecting transformation efficiency were investigated. Agrobacterium strain EHA105 containing the plasmid pCAMBIA1301 was used. The lowest concentration of hygromycin B in combined with either 250 mg L−1 carbenicillin or 250 mg L−1 cefotaxime to kill the rice shoot apical meristem was 50 mg L−1 and carbenicillin was more effective than cefotaxime. Two-hundred micromolar acetosyringone had no effect on the efficiency of transient expression. Sonication of rice shoot apical meristem for 10 s during bacterial immersion increased transient GUS expression in three-day co-cultivated seedlings. The gus gene was found to be integrated into the genome of the T0 transformant plantlets.  相似文献   

17.
Ormenese S  Havelange A  Deltour R  Bernier G 《Planta》2000,211(3):370-375
 The frequency of plasmodesmata increases in the shoot apical meristem of plants of Sinapis alba L. induced to flower by exposure to a single long day. This increase is observed within all cell layers (L1, L2, L3) as well as at the interfaces between these layers, and it occurs in both the central and peripheral zones of the shoot apical meristem. The extra plasmodesmata are formed only transiently, from 28 to 48 h after the start of the long day, and acropetally since they are detectable in L3 4 h before they are seen in L1 and L2. These observations indicate that (i) in the Sinapis shoot apical meristem at floral transition, there is an unfolding of a single field with increased plasmodesmatal connectivity, and (ii) this event is an early effect of the arrival at this meristem of the floral stimulus of leaf origin. Since (i) the wave of increased frequency of plasmodesmata is 12 h later than the wave of increased mitotic frequency (A. Jacqmard et al. 1998, Plant cell proliferation and its regulation in growth and development, pp. 67–78; Wiley), and (ii) the increase in frequency of plasmodesmata is observed in all cell walls, including in walls not deriving from recent divisions (periclinal walls separating the cell layers), it is concluded that the extra plasmodesmata seen at floral transition do not arise in the forming cell plate during mitosis and are thus of secondary origin. Received: 4 October 1999 / Accepted: 23 December 1999  相似文献   

18.
A mature, quiescent, primary axillary bud on the main axis of a flowering Nicotiana tabacum cv. Wisconsin 38 plant, when released from apical dominance and before forming its terminal flower, produced a number of nodes which was dependent upon its position on the main axis. Each bud produced about one more node than the next bud above it. The total number of nodes produced by an axillary bud was about 6 to 8 greater than the number of nodes present above this bud on the main axis. At anthesis of the terminal flower on the main axis, mature, quiescent, primary axillary buds had initiated 7 to 9 leaf primordia while secondary axillary buds, sometimes present in addition to the primary ones, had initiated 4 to 5 leaf primordia. When permitted to grow out independently, primary and secondary axillary buds located at the same node on the main axis produced the same number of nodes before forming their terminal flowers. In contrast, immature primary axillary buds which had produced only 5 leaf primordia and which were released from apical dominance prior to the formation of flowers on the main axis produced only as many nodes as would be produced above them on the main axis by the terminal meristem, i.e., “extra” nodes were not produced. Therefore, it is the physiological status of the plant and not the number of nodes on the bud at the time of release from apical dominance that influenced the node-counting process of a bud. When two axillary buds were permitted to develop on the same main axis, each produced the same number of nodes as single axillary buds developing at these nodes. Thus, the counting process in an axillary bud of tobacco is independent of other buds. Axillary buds on main axes of plants that had been placed horizontally produced the same number of nodes as identically-positioned axillary buds on vertical plants, indicating that gravity does not play a major role in the counting, by an axillary bud, of the nodes on the main axis.  相似文献   

19.
Gibberellins (GAs) are endogenous hormones that play an important role in regulating plant stature by increasing cell division and promoting seed germination. The GA2-oxidase gene from Arabidopsis thaliana (AtGA2ox8) was introduced into Brassica napus L. by Agrobacterium-mediated floral-dip transformation with the aim of decreasing the amount of bioactive GA and hence reduced the plant height. As anticipated, the transgenic plant exhibited dwarf phenotype. Importantly, compared with the wild type, the transgenic plants had delayed the seed germination, increased the chlorophyll content (28.7–36.3%) and photosynthesis capacity (14.3–18.7%) in a single leaf. At the same time, the photosynthesis capacity of the whole plants was significantly enhanced (35.7–48.6%) due to the extra leaves and branches.  相似文献   

20.
Radish leaves contain two homologous 5-kDa plant defensins which accumulate systemically upon infection by fungal pathogens (F.R.G. Terras et al., 1995, Plant Cell 7: 573–588). Here we report on the molecular cloning of the cDNAs encoding the two pathogen-inducible plant defensin isoforms from radish (Raphanus sativus L.) leaves. Tissue-print and whole-leaf electroblot immunostaining showed that the plant defensin peptides not only accumulate at high levels at or immediately around the infection sites in leaves inoculated with Alternariabrassicicola, but also accumulate in healthy tissue further away from the infection sites and in non-infected leaves from infected plants. Gel blot analysis of RNA confirmed that expression of plant defensin genes is systemically triggered upon fungal infection whereas radish PR-1 gene expression is only activated locally. In contrast to the radish PR-1 gene(s), expression of the radish plant defensin genes was not induced by external application of salicylic acid. Activation of the plant defensin genes, but not that of PR-1 genes, occurred upon treatment with methyl jasmonate, ethylene and paraquat. Received: 3 December 1997 / Accepted: 3 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号